Foundations of Chemistry for Students of Mechanical Engineering, Prof. Dr. Meier

Prüfung in Chemie für Studierende des Maschinenbaus und des Lehramts an Gymnasien

Friday, 22nd February 2013, 15:00-18:00

No unauthorised resources (*e.g.* lecture notes, textbooks etc.) may be used during the examination. Any attempt to use such unauthorised resources will be considered as cheating, and will lead to immediate exclusion from the examination and a mark of 5,0.

Foreign students may use a dictionary (mother tongue – English) but this may not contain any handwritten notes. The use of a calculator is not permitted.

Numerical answers that are given without showing any working or explanation will receive no marks.

In general, short answers with keywords will be sufficient; long essays are not necessary! To illustrate or explain a point, a clear sketch is often sufficient!

The maximum number of points for each question is given in parentheses.

0-49,5	50-54	55-59	60-64	65-70	71-75	76-80	81-85	86-90	91-95	96-100
5,0	4,0	3,7	3,3	3,0	2,7	2,3	2,0	1,7	1,3	1,0

Part 1:

- a) What is the significance of the two numbers in the nuclide ${}^{37}_{20}$ Cl? (1P)
- b) What is observed when the light emitted by an energetically-excited atom is passed through a prism and separated into its constituent wavelengths? Why was this observation important for the understanding of atomic structure? (2P)
- c) Give the electron configuration of the element zirconium (Zr). (1P)
- d) How do the radii of atoms change on going from left to right across a Row in the Periodic Table, and how do they change on going down a Group? Give reasons for your answers.
 (3P)
- e) Use the VSEPR model to give the three-dimensional structures of the BeCl₂, BF_3 , SiCl₄ und NH₃ molecules. (4P)
- f) Which of the molecules in question e) have a dipole moment? (2P)
- g) What is understood by permanent dipoles and induced dipoles? (2P)
- h) What are the characteristics of the structures of crystals? (1P)
- i) Which simple rule tells us that elements of Group 6 tend to form dianions X^{2-2} ?

(1P)

- j) How does an osmotic pressure arise? (1P)
- k) Give two important properties of metals. (2P)

Part 2:

- a) What does Hess's Law tell us?
- b) Give the equations that are used to calculate the changes in enthalpy, entropy and free energy for a reaction. (3P)
- c) A mixture of CO and H₂ ("Water Gas" or "Synthesis Gas") is formed when water vapour reacts with glowing coke (C). Give the equation for this reaction. Calculate the changes in enthalpy (ΔH°), in entropy (ΔS°) and in free energy (ΔG°) for the reaction, using the following values:

 $\Delta H^{o}_{f}(CO) = -111 \text{ kJ mol}^{-1}, \ ^{\Delta}H^{o}_{f}(H_{2}O) = -241.8 \text{ kJ mol}^{-1}$ $S^{\circ}(CO) = 198 \text{ J mol}^{-1} \text{ K}^{-1}, S^{\circ}(\text{H}_2\text{O}) = 188.8 \text{ J mol}^{-1} \text{ K}^{-1},$ $S^{\circ}(H_2) = 130.7 \text{ J mol}^{-1} \text{ K}^{-1}, S^{\circ}(\overline{C}) = 5.7 \text{ J mol}^{-1} \text{ K}^{-1}$ (4P)

- d) How is the change in Free Energy (ΔG°) the criterion for whether a reaction takes place spontaneously? Use this criterion to explain why the formation of ethene from ethane (with elimination of H_2) is spontaneous at high temperatures, even though the reaction is endothermic. (2P)
- e) The formation of ammonia (NH₃) from its elements is an equilibrium reaction. Give the equation for the reaction, and explain why entropy decreases when the reaction takes place. In which direction does the equilibrium position shift, when

- the temperature is (i) increased or (ii) decreased
- the pressure is (i) increased or (ii) decreased?

Explain your answers.

n.b. the reaction is exothermic: $\Delta H^{\circ}_{f}(NH_{3}) = -46 \text{ kJ mol}^{-1}$. (6P)

- f) For a reaction $aA + bB \equiv cC + dD$, give the equation that relates the equilibrium constant K to the concentrations of the substances involved, and also the equation that relates K to a thermodynamic quantity. (1P)
- g) At room temperature, the solubility product of CaF_2 is 4×10^{-12} mol³ l⁻³. What is the concentration of Ca^{2+} in a saturated solution of CaF_2 in pure water, and what is $[Ca^{2+}]$ in a saturated solution of CaF_2 in water in which the concentration of F⁻ is 0.1 mol l⁻¹? (2P)
- h) What is understood by (i) the rate, and (ii) the order of a chemical reaction? (1P)
- i) Give the equation that describes the influence of temperature on the rate of a chemical reaction. (1P)
- i) Determine the stoichiometric coefficients for the substances in the following redoxreactions, and give their oxidation numbers: (6P) [] Fe + [] NO₃⁻ + [] H⁺ \rightarrow [] Fe²⁺ + [] NO + [] H₂O $[] NaNO_2 + [] KMnO_4 + [] H_2SO_4 \rightarrow [] NaNO_3 + [] MnSO_4 + [] K_2SO_4 + []$ H_2O

$$[] MnO_2 + [] HBr \rightarrow [] MnBr_2 + [] Br_2 + [] H_2O$$

k) Calculate the potential E_{cell} of a Galvanic cell in which a Zn electrode is immersed in a 1 molar solution of ZnSO₄, and a Cu electrode is immersed in a 1 molar solution of CuSO₄? What are the redox half-reactions at each electrode? E°(Cu²⁺/Cu) = +0.34 V; E°(Zn²⁺/Zn) = -0.76 V

Part 3:

- a) Give the equation for the acid-base reaction between ethanoic acid and ammonia. How are acids and bases defined according to the theory of Lowry and Brønsted?
- b) Draw the Lewis structure for the ozone (O₃) molecule, and give the chemical equation for the formation of ozone. (2P)
- c) What are the oxidation numbers of the nitrogen atoms in N₂O, N₂, NH₃ and NO₂? (2P)
- d) Give one property of iron that is important in the industrial use of the metal. (1P)
- e) Name two raw materials from which iron can be obtained. (1P)
- f) What is the reducing agent in a Blast Furnace? Give the equation for the reaction in which Fe is formed in a Blast Furnace. (The equation for the overall reaction of a raw material to give metallic Fe is sufficient). (2P)
- g) In a Blast Furnace, finely-divided carbon is formed via the Boudouard equilibrium and dissolves into the newly-formed iron. Give the equation for the Boudouard equilibrium. What negative effect does this dissolved carbon have on the properties of Pig Iron? Give the name of a process from steel production, by which this carbon content can be reduced. (3P)
- h) The reduction of copper ores results in impure copper metal. What method is used to convert this crude product into high-purity copper? Give the equations for the reactions that take place. What solid substances are obtained from this process in addition to the pure copper? (3P)
- i) Give the equations for the reactions that take place when iron rusts in damp air. (2P)
- j) Name two important methods that can prevent the rusting of iron described in question (i) above. (2P)
- k) Draw the Lewis structures for SO_3 and the sulphate anion $(SO_4)^{2-}$. What are the oxidation states of S and O in each case? (4P)
- Name two modifications (allotropes) of carbon and describe the structure of each. (2P)

Part 4:

- a) There are five organic compounds with the sum formula C_4H_6 . Choose two of these, and give their Lewis structures, together with their correct names. What class does each of these molecules belong to? (3P)
- b) Give the Lewis structure for the molecule 4-ethyl-5-hydroxy-hept-3-one-1,7dicarboxylic acid. (4P)
- c) Give the Lewis structures of the characteristic functional groups of ethers, aldehydes and primary amides. (3P)
- d) Explain why alcohols have higher boiling points that the corresponding alkanes with the same number of carbon atoms. Why is ethane hydrophobic, whereas ethanol is hydrophilic?
 Give the equation and the reaction conditions for the industrial synthesis of methanol. Give the reaction equation for the synthesis of ethanoic acid from methanol. (5P)
- e) Give three characteristics of the structure of the benzene molecule, Draw the Lewis structures of the two mesomeric structures for benzene. (2P)
- f) Describe with the help of reaction equations the radical chlorination of ethane to chloroethane. (3P)
- g) What are the two principal types of mechanisms for polymerisation reactions? (1P)
- h) Give the structures of the repeating units in polypropene, polystyrene und polyvinylchloride. (3P)

	' <u>E</u>	10	۔ د	18 [⊕]	' <u>-</u>	36	86	' ы	54	293	' Ę	86	176	' E	T T		tium -							
He 4.002	- Heliu	3 20.17	Neo	7 Ar	Argo	Σ.	83.7	 Krypt	Xe	7 131.2	Xeno	R	1 222.0	Rado	1 D uo	1	n Ununoc	- 74	7 4.967	2 3+	utetium	r 103	0.1053	vrencium
	¹⁷ VIIA	F 9 18.99840	4.0 1. Fluor	CI 17 35.453	3.0 1. Chlor	Br 39	79.904	Brom	153	126.9044	2.5 1. lod	At 85	209.987	Astat	auus 1	т	 Jnunseptiu	1 02	2 2 2	3+ 1.	bium L	102 L	1009 26	lium Lav
	16 VI A	0 8 5.9994	5 2- auerstoff	S 16	8 4+ chwefel	Se 34	78.96	4 4+ Selen	e 52	27.60	1 4+ 1 Tellur	0 84	8.9824	0 2+ olonium	uh 11	292	- Inhexium		21 173	+ 1.1	Ytter	0 No	259.	
	⊳ ⊲	7	3+,3- 3. toff 5	15 3762 3	5+ 1. phor S	33 (160	3- 2.	51]	760 ×	700 - 2.	83	8040 20	3+ 2. nut P	0 1150			L M	168.934	1.2 3	Thulium	Nd 1	258.07	د. ۱ Mendelevi
	~ >	7 14.00	,4-3.0 (ff Sticks	4 P	1+ 2.1	82 As	74.92	t+ 2.0 Im Arse	50 Sb	0 121.	2+ 1.9 Antir	2 Bi	208.9	2+ 1.9 Bisr	11 4 Uut		 iumUnunp	200	LI VU	.2 3+	Erbium	m 10(1 ، 090.7	
	14 IVA	C 6 12.010	2.5 4+ Kohlensto	Si 1 28.085	1.8 ² Silicium	Ge 3	72.64	1.6 4 Germaniu	Sn 5	118.71	1.8 Zinn	Pb 8	207.2	1.8 Blei	Dud	289	- Ununquad	67	93032	3+ 1	mium	s 99 F	2.03	teinium
	13 11 A	B 5 10.811	0 3+ Bor	AI 13 6.981539	.5 3+ Aluminium	Ga 31	69.723	.6 3+ Gallium	In 49	114.818	.7 3+ Indium	TI 81	204.3833	.8 1+ Thallium	Uut11;	ı	 Jnuntrium	26 1,	00 164.	3+ 1.2	ium Hol	<u>щ</u>	30 7 27 7 24 7 24 7 24 7 24 7 24 7 24 7 24	um Einst
			5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 B 1 2 1 2 1 2	1 30	.409	2+ 1 ink	d 48	2.411	2+ 1 mium	80	0.59	t 1+ ksilber	b 112	11	- undia		5 162.5	+ 1.2	Dyspros	5	10.162	Californ
					_	29 Zr	16 65	r 1+ 1.6	47 C(382 11:	1+ 1.7 r Cad	79 HG	657 20	3+ 1.9	11 ¹ Uu		 nium Unu	Th GE	1 D U	1.2 3+	Terbium	Bk 97	247.0703	Berkelium
		sse	ahlen		B	Сu	63.54	+ 1.9 Kupfé	Ag	107.86	+ 1.9 Silbe	Au	196.96	+ 2.4 Gold	0 Rg	272	- M Roentger	7 64	57.25	3+	dolinium	m 96	24/	urium
	Iszahl	tomma	lations ₂			Ni 28	58.6934	1.8 2- Nickel	Pd 46	106.42	2.2 2- Palladium	Pt 78	195.084	2.2 4- Platin	Ds 11	269	harmstadtiu	52 52	2 7 3 ₹	3+ 1.2	ium Ga	95 C	0614	
	Irdnung	lative A	an Oxic		اال ا ۵	:0 27	933195 3±	3 2+ Cobalt	(h 45	2.90550	2 3+ hodium	r 77	92.22	2 4+ ridium	t 109	6.1378	itnerium D	Ц С	151.5	+ 1.2	n Europ	4 Am	tz 243.0	m Ameri
	۲°	Re				26 C	345 58.	a+ 1.8	44 R	.07 100 3+	nium R	76	123	4+ 2.3	108M	34 26	ium _	2 m C	150.36	1.2 3	Samariur	Pu 9	244.06	Plutoniu
		H 1.00794.	Vasserstoff		ω μ	5 Fe	45 55.8	2+ 1.8 3+ 1.8 Eis	3 Ru	2 101	T+ 2.2 m Ruthe	5 Os	7 190	(+ 2.2	07 HS	50	 n Hass	2 m G1	44.9127	1 3+	omethium	Np 93	37.0482	eptunium
	~	liät				Mn 2	54.9380	1.5 Mangar	Tc 4	98.906	1.9 7 Technetiu	Re 7	186.20	1.9 7 Rheniun	3Bh 1	262.12	- Bohriun	E L	1.242	3+ 1	odym Pr	92 N	02891 2	ran N
	Symb	negativi	Nam		6 VIB	Cr 24	51.9961	.6 3+ Chrom	Mo 42	95.94	.8 6+ Molybdän	W 74	183.84	.7 6+ Wolfram	<u>Sg</u> 10(263.12	 eaborgium		765 14	3+ 1.1	ym Ne(91 U	588 238. E 1 1 1	די ד <u>י</u> 1.1 שוו
		Elektror			5 B	23	9415	5+ 1 adium	0 41 1	90638	5+ 1 liob	a 73	94788	5+ 1 Intal	105 \$	2.11	- nium S		140.90	1.1	Praseod	Pa	6 231.03	Protactir
		ш			~	22 V	50 50	4+ 1.6	N 0†	24 92.9	4+ 1.6 m	72 Ta	180	4+ 1.5 m 15	04Db	11 26		Co E	140.116	1.1 3-	Cer	Th 90	232.0380	Thorium
					4 X	I I	2 47.8	+ 1.5 Tita	Zr /	91.2	+ 1.4 Zirconi	.Hf	7 178.	+ 1.3 Hafnii	9 Rf 1	3 261.	+ - Rutherfor		u	5			~	
					е IIIB	Sc 2	44.95592	1.3 3- Scandium	<u>γ</u> 39	88.9058	1.3 3- Yttrium	La 57	138.9054	1.1 3- Lanthan	Ac 8(227.0278	1.1 3- Actinium			Inci			iden	
	1 A	Be 4 .012182	5 2+ Beryllium	Mg 12	.2 2+ agnesium	Sa 20	40.078	.0 2+ Calcium	Sr 38	87.62	.0 2+ trontium	3a 56	37.327	.9 2+ Barium	Ra 88	26.0254	.9 2+ Radium		andtan	-מוווומו			Actin	
1 1 7794 7794	1+ erstoff	i 3 941 9	1+ 1 hium E	a 11 ³⁹⁷⁶⁹ 2	1+ 1-	19 (0983	1+ 1+	37	4678	1+ 1 idium 5	s 55 E	90545	1+ 0. sium	- 87	.0197 2	1+ 0 rcium		-	-				
	2.1 Wass	<u>ق</u>	1.0 Litl	N 96.22	0.9 Nat	×	39.	0.8 Ka	Ř	82. 82.	0.8 Rub	Ű	132.	0.7 Cä	Ē	223	0.7 Frar							
~		2		ç	7		4			ŝ			9			2								

Reduzierte Form	≓ Oxidierte Form	+ <i>z</i> e ⁻	Standardpotential E° in V
Li	\rightleftharpoons Li ⁺	+ e ⁻	-3,04
К	$\rightleftharpoons \mathrm{K}^+$	+ e ⁻	-2,92
Ba	\Rightarrow Ba ²⁺	$+2e^{-}$	-2,90
Ca	\rightleftharpoons Ca ²⁺	$+2e^{-}$	-2,87
Na	\Rightarrow Na ⁺	+ e ⁻	-2,71
Mg	\Rightarrow Mg ²⁺	$+2e^{-}$	-2,36
Al	$\Rightarrow Al^{3+}$	$+3e^{-}$	-1,68
Mn	\Rightarrow Mn ²⁺	$+2e^{-}$	-1,19
Zn	\rightleftharpoons Zn ²⁺	$+2e^{-}$	-0,76
Cr	\rightleftharpoons Cr ³⁺	$+3e^{-}$	-0,74
S ²⁻	⇒S	$+2e^{-}$	-0,48
Fe	\Rightarrow Fe ²⁺	$+2e^{-}$	-0,41
Cd	\rightleftharpoons Cd ²⁺	$+2e^{-}$	-0,40
Concentration	\Rightarrow Co ²⁺	$+2e^{-}$	-0,28
Sn	\Rightarrow Sn ²⁺	$+2e^{-}$	-0,14
Pb	$\rightleftharpoons Pb^{2+}$	$+2e^{-}$	-0,13
Fe	\Rightarrow Fe ³⁺	$+3e^{-}$	-0,036
$H_2 + 2 H_2O$	$\Rightarrow 2 H_3 O^+$	$+2e^{-}$	0
Sn ²⁺	\Rightarrow Sn ⁴⁺	$+2e^{-}$	+0,15
Cu+	\rightleftharpoons Cu ²⁺	+ e ⁻	+0,15
$SO_2 + 6H_2O$	\Rightarrow SO ₄ ²⁻ + 4 H ₃ O ⁺	$+2e^{-}$	+0,17
Cu	\rightleftharpoons Cu ²⁺	$+2e^{-}$	+0,34
Cu	\rightleftharpoons Cu ⁺	+ e ⁻	+0,52
2 I-	\rightleftharpoons I ₂	$+2e^{-}$	+0,54
$H_2O_2 + 2 H_2O$	$\Rightarrow O_2 + 2 H_3 O^+$	$+2e^{-}$	+0,68
Fe ²⁺	\Rightarrow Fe ³⁺	+ e ⁻	+0,77
Ag	$\rightleftharpoons Ag^+$	+ e ⁻	+0,80
Hg	\rightleftharpoons Hg ²⁺	$+2e^{-}$	+0,85
$NO + 6 H_2O$	$\Rightarrow NO_3^- + 4H_3O^+$	$+3e^{-}$	+0,96
$2 Br^{-}$	\Rightarrow Br ₂	$+2e^{-}$	+1,07
6 H ₂ O	$\Rightarrow O_2 + 4 H_3 O^+$	$+4e^{-}$	+1,23
$2 \mathrm{Cr}^{3+} + 21 \mathrm{H}_2\mathrm{O}$	\Rightarrow Cr ₂ O ₇ ²⁻ + 14 H ₃ O ⁺	+6e ⁻	+1,33
2 Cl-	\rightleftharpoons Cl ₂	$+2e^{-}$	+1,36
$Pb^{2+} + 6H_2O$	\Rightarrow PbO ₂ + 4 H ₃ O ⁺	$+2e^{-}$	+1,46
Au	\Rightarrow Au ³⁺	$+3e^{-}$	+1,50
$Mn^{2+} + 12 H_2O$	\Rightarrow MnO ₄ ⁻ + 8H ₃ O ⁺	$+5e^{-}$	+1,51
$3 H_2 O + O_2$	$\Rightarrow O_3 + 2H_3O^+$	$+2e^{-}$	+2,07
2F ⁻	\rightleftharpoons F ₂	$+2e^{-}$	+2,87