Grundlagen der Chemie für Studierende des Maschinenbaus, Prof. Grunwaldt und Prof. Heske

Chemistry for Students of Mechanical Engineering Studiengang Bachelor

Thursday, 13th March 2014, 14:00-17:00

No unauthorised resources (*e.g.* lecture notes, textbooks etc.) may be used during the examination. Any attempt to use such unauthorised resources will be considered as cheating, and will lead to immediate exclusion from the examination and a mark of 5,0.

Foreign students may use a dictionary (mother tongue – English) but this may not contain any handwritten notes. The use of a calculator is not permitted.

Numerical answers that are given without showing any working or explanation will receive no marks.

In general, short answers with keywords will be sufficient; long essays are not necessary! To illustrate or explain a point, a clear sketch is often sufficient!

The maximum number of points for each question is given in parentheses.

Conversion from % to mark:

0-49,5	50-54	55-59	60-64	65-70	71-75	76-80	81-85	86-90	91-95	96-100
5,0	4,0	3,7	3,3	3,0	2,7	2,3	2,0	1,7	1,3	1,0

Question 1:

- a) What is the difference between an element and a chemical compound? What is the difference between isotopes of the same element? (3P)
- b) What do the numbers in the nuclide $\frac{7}{3}$ Li tell us?

Give the electronic configurations of sodium (Na) and nitrogen (N), showing clearly how electrons are distributed between orbitals of the same energy.

Explain why compounds of the formulae Na_2O and NH_3 form from their respective constituent elements. Give reasons for your answer. (4P)

c) In the analytical method Atomic Absorption Spectroscopy, the substance to be analysed is first atomised, the atoms are then introduced into a beam of polychromatic light, and the intensity of the transmitted light is measured as a function of wavelength.

What results does one obtain from this? Why can it be used as an analytical method? This method is based on a principle that is important for the description of the electronic structure of atoms. What is this principle? (2P)

- d) Name the four Quantum Numbers, that determine the energy levels of electrons in an atom. State briefly the significance of each Quantum Number. (4P)
- e) On which physical principle is the separation process Solvent Extraction based?(1P)

Question 2:

- a) What are the oxidation states of the nitrogen atoms in the following compounds: N₂O, N₂, NH₃, NO₂? (2P)
- b) The formation of ammonia (NH₃) from the elements is an exothermic equilibrium reaction. Give the equation for the reaction, and explain why entropy decreases as the reaction proceeds. Why was it such a great challenge to develop an efficient industrial synthesis of ammonia, for which Carl Bosch obtained the Nobel Prize?

In which direction is the equilibrium position shifted, if:

(i) the temperature is increased?

(ii) the pressure is increased?

Explain your answer, noting that the reaction is exothermic ($\Delta H = -46 \text{ kJ/mol}$). (6P)

c) Fritz Haber, who taught in Karlsruhe, discovered in 1909 that the synthesis of ammonia from the elements required the use of a catalyst, and at first used metallic osmium for this.

Why must a catalyst be used? Does this alter the equilibrium position?

Osmium is very expensive. What catalyst is now used industrially? (3P)

d) Ammonia, or alternatively urea, can be used to remove polluting substances from waste gases.

Which toxic gases are formed in internal combustion motors?

What group of toxic waste gases can be removed using ammonia? Give the reaction equations.

Why is urea used instead of ammonia in mobile systems such as car engines? (6P)

- e) The use of gas-powered motors is being encouraged. What volume (in m³) of CO₂ is produced by the combustion of 2.24 m³ of methane (in both cases at 273K und 1 bar)? What is the mass of this CO₂ in kg? (C: 12 g mol⁻¹, H: 1 g mol⁻¹) (2P)
- f) What is understood by the "Greenhouse Effect"? Which property of the CO₂ molecule makes it a significant greenhouse gas? (2P)

Question 3:

- a) According to Brønsted and Lowry, what is understood by acids and bases? Give the reaction equation for the protolysis equilibrium of ethanoic acid (H₃CCOOH) in water. State which of the four species involved are acting as acids, and which as bases. (3P)
- b) At room temperature, the solubility product of $PbCl_2 L_{PbCl_2} = 3.2 \times 10^{-5} \text{ (mol/l)}^3$. What is the concentration of Pb^{2+} (In mol/l) in a saturated solution of $PbCl_2$ in pure water, and what would the concentration of Pb^{2+} be if the water contains 0.1 mol/l chloride? Use these Pb^{2+} concentrations to calculate the solubility of $PbCl_2$ (in g/l) in the two solutions. M(PbCl_2) = 278.2 g/mol (4P)
- c) Determine the stoichiometric coefficients for the "Thermite" redox reaction:

[] $Fe_2O_3 + [] AI \rightarrow [] Fe + [] Al_2O_3$ Which substance is acting as a reducing agent, and which as an oxidising agent? (3P)

d) What is the potential (in volts) of a Co/Zn Daniell cell, if 1 molar solutions of cobalt(II) sulphate and zinc(II) sulphate are used? What are the redox half-reactions? (n.b. standard reduction potentials are listed on the last page of the Klausur).
Will the potential of this Galvanic cell increase or decrease, if the concentration of Co²⁺ is decreased? What is the equation that can be used to calculate this (give either the equation itself or its name)? (5P)

- e) Two glass beakers each contain a piece of tin metal (Sn). One beaker is then filled with a 1 mol/l solution of CuSO₄, the other with a 1 mol/l solution of FeSO₄. In each case, use the table of Standard Reduction Potentials on the last page to explain whether you expect a chemical reaction to take place. (2P)
- f) Give the equations for the two redox half-reactions that take place when a lead accumulator (car battery) is discharged. What happens when the accumulator is recharged? (3P)

Aufgabe 4:

- a) Give the name of an industrial method for the production of hydrogen from hydrocarbons. Give the corresponding reaction equation(s). (2P)
- b) Draw the Lewis-structure for the ozone (O_3) molecule, and give the reaction equation for the formation of ozone. (2P)
- c) State three industrially-important properties of metals. (3P)
- d) What is understood by Passivation?
- e) State a property of aluminium that makes it an important industrial material. The main raw material for the production of aluminium is the ore bauxite, which is a mixture of Al_2O_3 and Fe_2O_3 .

What are the four principal steps in the production of aluminium from bauxite? Give the equations for the reactions that take place in each stage. (6P)

(1P)

f) Most of the sulphur that is needed for the production of sulphuric acid is obtained from the processing of mineral oil or natural gas.

Which sulphur-containing compound is obtained in this way? Which process is used to obtain sulphur from this compound? Give the reaction equations.

Give the equations of the reactions that take plave during the industrial production of sulphuric acid from sulphur. (5P)

g) In a Blast Furnace, partial oxidation of coke results in formation of the reducing agent CO. This is also involved in the Boudouard equilibrium, by which finely-divided carbon is formed which dissolves in the liquid iron.

Give the reaction equation for the Boudouard equilibrium.

What disadvantageous effect does this dissolved carbon have on the "pig iron"? Give the name of a process that is used to reduce this carbon content during the production of steel. (3P)

- h) What is understood by corrosion, and what is a local element? (2P)
- i) Give two methods for protecting metals from corrosion. (2P)
- j) Give the equations of the reactions that take place when iron rusts in moist air. (4P)

Question 5:

- a) What is the hybridisation of carbon atoms involved in single, double and triple bonds, respectively? In each case, what is the three-dimensional geometry of the bonds to the central carbon atom? (3P)
- b) Give three structural characteristics of the benzene molecule, and draw the Lewisstructures of the two mesomeric structures. What is the hybridisation of the carbon atoms? (3P)
- c) Give the Lewis-structure of the 3,3-dimethylpentan-1-ol molecule. (2P)

- d) Draw the Lewis-structures of the characteristic functional groups of ketones, alcohols and carboxylic acids. (3P)
- e) Explain why an alcohol has a much higher boiling point than the corresponding alkane with the same number of carbon atoms. Why is ethane hydrophobic, whereas ethanol is hydrophilic? (2P)
- f) Describe using a simple sketch the difference between a simple distillation and distillation using a fractionating column. (2P)

2 202 - " - "	<u>8</u> ° 18	∞ ' ⊑ 17 % '	118	- m	
¹⁸ VIIIA Helium Helium Ne 10			Rn 86 222.0176 Radon 1 1Uuo 11	 ium Ununoctium Lu 71 174.967 1.2 3+ Lutetium	Lr 103 260.1053 Lawrencium
17 VIIA 18.998403 14.0 1- Fluor	CI 17 35.453 3.0 1- Chlor Br 35	79.904 2.8 1- Brom 1 53 126.90447 2.5 1-	At 85 Rn 86 209.9871 222.0176 2.2 1- Radon Astat Radon 6Uus 11/2Uuo 118	 Ununseptium 70 Lu 3.04 174. 3.1.2 bium Lute	
16 VIA 08 3.5 2- 4 Sauerstoff		78.96 79.9 2.4 44 2.8 5elen Bro Te 52 15 127.60 126.9 2.1 44 2.5	Po 84 208.9824 2.0 24 2 Polonium 2910 110	×ium Yb	0' No 102 1 259.1009 - 1.3 - um Nobelium
, ch	33 ⁵⁺ 15 ⁵⁺ 13 33	2160 3+ 3- 3- 51 3+ 3+ 3- 3- 3- 3- 3-	Linm Antimon Lenur 1 Pb 82 Bi 83 Po 84 207.2 208.98040 208.9824 1.8 4+ 1.9 3+ Blei 2+ 1.9 3+ 2.0 3Uuq 114Uup 115Uuh 11 289 - 292 292	- Junuhe Dentium Ununhe Tm 69 1.2 3+ Thulium	Fm 100 Md 10' 257.0951 258.01 1.3 - 1.3 - Fermium Mendelevium
15 15 14.0067 14.0067 14.0067 14.0067 14.0067		4 4 1 1 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4	289 289 289 2012 2012 2012 2012 2013 2012 2013 2013	 adiumUnunper Er 68 167.259 1.2 3+ Erbium	Fm 10(257.0951 1.3 - Fermium
14 IXA 12.0107 12.0107 Kohlenstoff	The second se	72.6 Germa Sn 118.1	1 Pb 82 3 207.2 + 1.8 4+ 1.8 4+ 1.8 4+ 1.0 11 289	 rium Ununqua HO 67 164.93032 1.2 3+ Holmium	2.03 2.03
13 B5 10.811 8or 8or	AI 13 26.981532 1.5 3+ Aluminium Ga 31		TI 81 TI 81 204.3833 1.8 1+ Thallium ZUut113	- Jhunt 00 00 mi	98 796 1,34 1,25
	12 IIB IIB Zn 30	65.409 1.6 2+ Jink Cd 48 112.411	Laamum Induum Hg 80 TI 81 200.59 204.3833 200.59 204.3833 1.9 1+ 14 Quecksiber Thallium Uubb 112Uut111	 Ununbium 65 Dy (2535 162.5 3+ 1.2 ium Dyspros	
	29	46 24 682 682 1+	79 8657 34 11	158.5 158.5 T b	6 Bk 97 247.0703 + 1.3 3+ Berkelium
ار ausse		834 46	90 ¹¹ ¹¹ ¹¹ ¹² ¹² ¹² ¹² ¹²		Cm 96 247 1.3 3+ Curium
Ordnungszahl Relative Atommasse	xidationsz 10	-		 rium Darmsta EU 63 151.964 1.2 3+ Europium	Am 95 243.0614 1.3 3+ Americium
Ordnu	uttige Oxio vill Co 27	58.933195 24 1.8 24 Cobalt 102.90550 102.90550 2.2 3+ 2	MADDIUM 192.22 192.22 4+ 192.22 192.22 192.22 100 266.1378	um Neitnerium Darmst Sm 62 Eu 63 150.36 151.964 1.2 3+ Samarium Europium	94 642 4+ 1
	⁸ Fe 26	55.845 58.8331 1.8 2+ 1.8 3+ 1.8 3+ 1.8 3+ 1.8 1.8 1.8 3+ 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 101.07 102.905 2.2 4+ 2.4 2.2	Autrenum moou OS 76 Ir 7 19023 192. 192.2 4+ 2.2 0smium Iridiu THS 108 Mt 1 264.1		
H1 1.00794 - Wasserstoff	viib Mn 25	54.938045 1.5 2+ Mangan Tc 43 98.9062 1.9 7+ 2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Bohrium Hassi B 60 Pm 61 34 1.1 34 m Promethium	12 Np 93 891 237.0482 6+ 1.3 5+ Neptunium
Symbol . gativität	4	6 4 6 7 7 7 7 7 7 7 7 7 7	Moypaan lect W 74 R 183.84 18 1.7 6+ 1.5 Wolfram R Sg 106BI Sg 263.12 2	gium Nd (1.1 Neody	Th 90 Pa 91 U 92 232.03806 231.03588 238.02891 1.3 4+ 1.5 5+ 1.4 6+ Thorium Protactinium Uran
Symbol Elektronegativitä	> ū		74 74 1.7 6-4 Wolfram 05 59 10	- - - - - dium Dubnium Seaborgium - - Ce 58 Pr 59 No - 140.116 140.90765 144 1.1 3+ 1.1 3+ Cer Praseodym Net	Pa 91 231.03588 1.5 5+ Protactinium
Ee	⁵ VB V23	^{1.6} ^{1.6} ^{1.6}	MIND Ta 73 180.94788 1.5 54 Tantal Tantal Db 105 262.11	- - - - fium Dubnium Seabo Ce 58 Pr 59 140.116 140.90765 .1 3+ .1 3+ .er Praseodym	Th 90 Pa 91 232.03806 231.03588 1.3 4+ 1.5 5+ Thorium Protactinium
	⁴ IVB TI 22	592 47.867 3+ 1.5 4+ um Titan 9 Zr 40 585 91.224 3+ 1.4 4+	Ittruum Lirconium Niod La 57 Hf 72 Ta 73 38.90547 178.49 180.94788 .1 34 1.3 44 Lanthan Hafnium Ta 73 Ac 89 Rf 104 Db 105 Z7.0278 261.11 262.11		7 232.7
			La 57 La 57 138.90547 1.1 3+ Lanthan AC 89 227.0278	E	
2 IIA 9.012182 8eryllium Beryllium		+ 00 +	56 327 2+ 1 88 88 254 254	thani 1	Actiniden
	,			0	
1 IA 1.00794 2.1 1+ Wasserstoff Li 3 6.941 0.1+ Lithium	Na 11 22.989769 0.9 1+ Natrium K 19	39.0983 0.8 1+ Kalium Rb 37 85.4678 0.8 1+	rundiatum CS 55 132.90545 0.7 1+ Casium Fr 87 223.0197	0.7 1+ Francium	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3	5 A	9 2		

Reduzierte Form	⇒ Oxidierte Form	+ <i>z</i> e ⁻	Standardpotential E° in V	
Li	\rightleftharpoons Li ⁺	+ e ⁻	-3,04	
К	$\rightleftharpoons \mathrm{K}^+$	+ e ⁻	-2,92	
Ba	\Rightarrow Ba ²⁺	+2e ⁻	-2,90	
Ca	\rightleftharpoons Ca ²⁺	$+2e^{-}$	-2,87	
Na	\Rightarrow Na ⁺	+ e ⁻	-2,71	
Mg	\Rightarrow Mg ²⁺	+2e ⁻	-2,36	
Al	$\Rightarrow Al^{3+}$	$+3e^{-}$	-1,68	
Mn	\Rightarrow Mn ²⁺	$+2e^{-}$	-1,19	
Zn	\rightleftharpoons Zn ²⁺	$+2e^{-}$	-0,76	
Cr	\rightleftharpoons Cr ³⁺	$+3e^{-}$	-0,74	
S ²⁻	⇒S	+2e ⁻	-0,48	
Fe	\rightleftharpoons Fe ²⁺	$+2e^{-}$	-0,41	
Cd	\rightleftharpoons Cd ²⁺	$+2e^{-}$	-0,40	
Co	$\rightleftharpoons \mathrm{Co}^{2+}$	$+2e^{-1}$	-0,28	
Sn	\rightleftharpoons Sn ²⁺	$+2e^{-}$	-0,14	
Pb	$\rightleftharpoons Pb^{2+}$	$+2e^{-}$	-0,13	
Fe	\rightleftharpoons Fe ³⁺	+3e ⁻	-0,036	
$H_2 + 2 H_2 O$	$\Rightarrow 2H_3O^+$	$+2e^{-}$	0	
Sn ²⁺	\Rightarrow Sn ⁴⁺	$+2e^{-}$	+0,15	
Cu ⁺	\rightleftharpoons Cu ²⁺	+ e ⁻	+0,15	
$SO_2 + 6H_2O$	\Rightarrow SO ₄ ²⁻ + 4 H ₃ O ⁺	$+2e^{-}$	+0,17	
Cu	\Rightarrow Cu ²⁺	$+2e^{-}$	+0,34	
Cu	\rightleftharpoons Cu ⁺	+ e ⁻	+0,52	
21-	\rightleftharpoons I ₂	+2e ⁻	+0,54	
$H_2O_2 + 2H_2O$	$\Rightarrow O_2 + 2H_3O^+$	+2e ⁻	+0,68	
Fe^{2+}	\Rightarrow Fe ³⁺	+ e ⁻	+0,77	
Ag	$\Rightarrow Ag^+$	+ e ⁻	+0,80	
Hg	\Rightarrow Hg ²⁺	+2e ⁻	+0,85	
$NO + 6H_2O$	$\approx \mathrm{NO}_3^- + 4 \mathrm{H}_3\mathrm{O}^+$	$+3e^{-}$	+0,96	
2Br ⁻	\Rightarrow Br ₂	$+2e^{-}$	+1,07	
6 H ₂ O	$\approx \text{D1}_2$ $\approx \text{O}_2 + 4 \text{H}_3 \text{O}^+$	$+4e^{-}$	+1,23	
$2 \text{ Cr}^{3+} + 21 \text{ H}_2\text{O}$	$\approx \text{Cr}_2\text{O}_7^{2-} + 14\text{H}_3\text{O}^+$	$+6e^{-}$	+1,23 +1,33	
$2 \text{ Cl}^{-} + 21 \text{ H}_2 \text{ O}^{-}$	$\begin{array}{l} \leftarrow \operatorname{Cl}_2\operatorname{Cl}_7 & + \operatorname{I} + \operatorname{II}_3\operatorname{O} \\ \rightleftharpoons \operatorname{Cl}_2 \end{array}$	$+2e^{-}$	+1,35 +1,36	
$Pb^{2+} + 6H_2O$	$\approx Cl_2$ $\Rightarrow PbO_2 + 4H_3O^+$	$+2e^{-}$	+1,30	
$H_0 + 0 H_2 O$ Au	$\approx 100_2 + 4 \Pi_3 O^{-1}$ $\approx Au^{3+}$	$+2e + 3e^{-}$	+1,40 +1,50	
$Mn^{2+} + 12 H_2O$	$\approx \text{MnO}_4^- + 8\text{H}_3\text{O}^+$	$+5e^{-}$		
		+3e +2e ⁻	+1,51	
$\begin{array}{l} 3\mathrm{H_2O} + \mathrm{O_2} \\ 2\mathrm{F^-} \end{array}$	$\begin{array}{l} \rightleftharpoons \mathrm{O}_3 + 2 \mathrm{H}_3\mathrm{O}^+ \\ \rightleftharpoons \mathrm{F}_2 \end{array}$	+2e +2e ⁻	+2,07 +2,87	