Grundlagen der Chemie für Studierende des Maschinenbaus, Prof. Grunwaldt und Prof. Heske

Chemistry for Students of Mechanical Engineering, Studiengang Bachelor

Thursday, 2nd October 2014, 9:00-12:00

No unauthorised resources (*e.g.* lecture notes, textbooks etc.) may be used during the examination. Any attempt to use such unauthorised resources will be considered as cheating, and will lead to immediate exclusion from the examination and a mark of 5,0.

Foreign students may use a dictionary (mother tongue – English) but this may not contain any handwritten notes. The use of a calculator is not permitted.

Numerical answers that are given without showing any working or explanation will receive no marks.

In general, short answers with keywords will be sufficient; long essays are not necessary! To illustrate or explain a point, a clear sketch is often sufficient!

The maximum number of points for each question is given in parentheses.

Conversion from % to mark:

0-49,5	50-54	55-59	60-64	65-70	71-75	76-80	81-85	86-90	91-95	96-100
5,0	4,0	3,7	3,3	3,0	2,7	2,3	2,0	1,7	1,3	1,0

Question 1:

a)	What is understood by	/ atomic number.	and what are isotop	es?	(2 F	2)
ω,			and milat are lootop		۰	<u> </u>

- b) Give the number of electrons, protons and neutrons in atoms of uranium with atomic weights 235 and 238. (2 P)
- c) Name the four quantum numbers that describe the energy levels of electrons in atoms. Explain briefly (keywords are enough) the significance of each quantum number.
 (4 P)
- d) How many electrons must atoms of the elements strontium and bromine either lose or gain, when they form ionic compounds? (2 P)
- e) What do (i) the Pauli Principle and (ii) Hund's Rules tell us? (2 P)
- f) Give the electron configuration of the oxygen (O) atom (1 P)
- g) Arrange the elements Na, Al, Cl and F in order of increasing electronegativity. (2 P)

Question 2:

- a) What is understood by (i) enthalpy of reaction and (ii) entropy of reaction? (2 P)
- b) Modern power stations often use natural gas as fuel. Give the reaction equation for the complete combustion of methane (CH₄).

Use the values given below to calculate the enthalpy (Δ H), entropy (Δ S) and Gibbs free energy (Δ G) of reaction for the complete combustion of methane at 1500 °C. (*n.b.* these values are appropriate for 1500 °C, you do not need to take any temperature dependence into account). (4 P)

Substance	ΔH_f^o [kJ/mol]	ΔS_f^o [J/mol·K]
CH ₄	30	300
O ₂	49	260
CO ₂	-312	300
H ₂ O	-179.5	259.5

c) Using the Gibbs free energy of reaction ΔG , state the criterion for a spontaneous process.

Give the reaction equation for the formation of ethene by elimination of H_2 from ethane. Use the above criterion to explain why this reaction can take place at high temperature, even though the reaction is endothermic. (3 P)

- d) For a reaction aA + bB ≒ cC + dD, give the equation that relates the equilibrium constant K to the concentrations of the substances taking part in the reaction, and also an equation that relates K to a thermodynamic quantity.
 (2 P)
- e) The formation of sulphur trioxide (SO_3) from sulphur dioxide (SO_2) and oxygen (O_2) is an equilibrium reaction. Give the reaction equation, and decide whether the entropy increases or decreases when SO_3 is formed.

In which direction does the equilibrium position shift, when:

- the temperature is increased?
- an excess of oxygen is added to the starting gas mixture?

Explain your answers, noting that the formation of SO₃ is exothermic (ΔH° = -99 kJ/mol).

The reaction takes place with the help of a catalyst.

How does a catalyst affect a chemical reaction? Does it change the equilibrium position of the reaction? What is the important chemical substance in the catalyst usually used for the formation of SO_3 ? (6 P)

- f) What is understood by oxidation and reduction? For the formation of sodium chloride (NaCl) from the elements (Na und Cl₂), give the equations for the reduction and oxidation half-reactions. (3 P)
- g) What is the potential produced by a Ag/Sn Daniell cell, in which 1 molar solutions of AgNO₃ and Sn(NO₃)₂ are used (see table of standard electrode potentials at end of this exam script). What half-reactions take place at the electrodes? (3 P)
- h) Two glass beakers each contain a piece of iron (Fe) metal. A 1 molar solution of CuSO₄ is poured into one beaker; a 1 molar solution of MnSO₄ is poured into the other. For each beaker, do you expect a chemical reaction to take place, and if so, what will happen?

Question 3:

- a) Give the reaction equation for the **partial** oxidation of hexane to hydrogen and carbon monoxide. (1 P)
- b) What is understood by the term "greenhouse effect", and what property of the carbon dioxide (CO2) molecule makes it an efficient greenhouse gas? (1 P)
- c) Name the two allotropes of the element oxygen that are found in the atmosphere.
 For each one, give both the sum formula and the Lewis structure.
 Which of these forms is the more common, and why is it attracted into a magnetic field?
- d) How is ammonium nitrate (NH₄NO₃) produced from ammonia? Give equations for the the four reactions involved in the process. (4 P)
- e) For each of the metals aluminium (Al), iron (Fe) and copper (Cu), state one property that is made use of industrially.
 For each of these metals, give a raw material from which they can be obtained, the most important production method, and an important industrial application. (6 P)
- f) Why is limestone (CaCO₃) added to the mixture of iron ore and coke in a Blast Furnace? (1 P)
- g) Give equations for the reactions that take place when iron rusts in moist air. (4 P)
- h) Apart from platinum itself, name two further members of the "platinum group" of metals. What is the main industrial significance of the platinum metals? (2 P)
- i) What is understood by corrosion, and what is a "local element" (bimetallic corrosion)? (2 P)

Question 4:

- a) There are two organic compounds with the sum formula C₂H₆O. Give Lewis structures for both compounds. To which classes of organic compounds do they belong? Give their correct names.
 (3 P)
- b) Give the Lewis structure for the compound 2,2,4-trimethylpentane. (3 P)
- c) Explain with the help of sketches the different covalent bonding in ethane, ethane and ethyne, giving the hybridisations of the carbon atoms, the orbital structures and the bond angles.
 (6 P)
- d) Describe the mechanism of a radical chain reaction, using the formation of CH_3Br from CH_4 and Br_2 as an example. (3 P)
- e) Draw the Lewis structures of the functional groups characteristic of the compound classes alkenes, ketones and carboxylic acids. (3 P)
- f) Give the structures of the characteristic repeating units in polyethene and polystyrene. From which monomers are these two polymers produced? (2 P)

Question 5:

- a) What pollutants can be formed during the combustion of hydrocarbon fuels in a combustion motor? (2 P)
- b) What catalyst system is used to remove toxic substances from the exhaust gas of a petrol engine? (1 P)
- c) Describe with the help of a diagram how the amounts of the pollutants formed depends on the fuel:air ratio used in the engine. (2 P)
- d) Why is it only sensible to use an exhaust catalyst for a petrol engine, when it is being run with a stoichiometric ($\lambda = 1$) fuel:air ratio? (1 P)
- e) What is understood by "knocking" in a petrol engine? What number is used to describe the knock-resistance of a petrol, and how is it defined? (2 P)
- f) Why are more nitrogen oxides (NO_x) formed during the running of a Diesel motor than for a petrol motor? What process is used to treat the exhaust gases to minimise the amount of pollutants released? In Diesel vehicles, what substance is added to the exhaust gases, and what compound is formed from this *in situ* that acts as a reducing agent in this process? (2 P)
- g) How much CO₂ is emitted by a car with a petrol engine that consumes 5,7 litre per 100km? You may assume for the calculation that the fuel is 100 % isooctane with a density $\rho = 0,7$ g/ml, and that it is completely combusted in the engine. (3 P)
- h) State an important function of lubricants. (1 P)
- i) Name one solid lubricant, and one application of solid lubricants. (1 P)

- A																			18 VIIIA
H1 1.00794																			He 2 1.002602
2.1 1+ Wasserstoff	2 IIA				Sy	v lodm		\ [.	Ordnur	Igszahl			13 11	-∼ ≥	∽> ₊∢	A 2	16 VIA	17 VIIA	 Helium
Li 3 6.941 9	Be 4 9.012182			Elei	ktronega	ıtivität	H ,1007	$\frac{7}{1}$	elative.	Atommas	se		G (6.6)	5 11 12.01	6 N 107 14:0	7 15 067 15	0 8 5.9994 18	F 9 3.998403	Ne 10 20.1797
1.0 1+ 1 Lithium	1.5 2+ Beryllium				Z	lame /	- 2.1 Wassers		ifine Ox	idations7	naha		2.0 Bor	3+ 2.5 4 Kohlen	++,4-3.0 stoff Stick	3+,3- 3.5 stoff Sa	5 2- 4 werstoff	.0 1- Fluor	Neon
Na 11	Mg 12								vo afili		aller			13 Si 530 28.0	14 P	15 15	S 16	CI 17 35 A53	Ar 18
0.9 1+ 1 Natrium M	1.2 2+. Magnesium	3 IIB	⁴ N	5 VB	9 VIE	~	7 IIB	∞ _	6 – III –	⁶ [₽ 8	12 IIB	-0:301 1.5 Alumini	3+ 1.8 um Silici	4+ 2.1 mm Phos	5+ 1.8 Schort 20	2.000 3 4+ 3 dhwefel	.0 1- Chlor	Argon
K 19 (Ca 20	Sc 21	Ti 22	V 2;	3 Cr	24 MI	n 25 F	-e 26	Co 27	Ni 28	Cu 29	9 Zn 3	0 Ga	31 Ge	32 As	33 S	se 34	Br 35	Kr 36
39.0983 0.8 1+ 1 ^{kaliim}	40.078 1.0 2+ Calcium	44.95592 1.3 3+	47.867 1.5 4+ ^{Titon}	50.941	5 51.99 5+ 1.6	61 54.9 3+ 1.5 2+ 1.5	38045 (2+ 3+ 1.	55.845 8 2+ 8 3+	58.933195 58.933195 1.8 2+ 1.8 3+ 7+	58.6934 1.8 2+ Nickal	63.546 1.9 2. Kunfar	65.400 + 1.6 2	9 69.72 2+ 1.6 6-Ilin	23 72. 3+ 1.6	64 74.92 4+ 2.0	2160 7 3+ 2.4	78.96 4 4+ 2 ^{Calan}	79.904 .8 1- ^{Brom}	83.798 Krunton
Rb 37	Sr 38	Y 39	Zr 40	Nb 4	11 Mo	42 Tc	5 43 F	Ru 44	Rh 45	Pd 46	Ag 4	7 Cd 4	8 In 4	-9 Sn	50 Sk	0 51 T	e 52	153	Xe 54
85.4678 0.8 1+ 1	87.62 1.0 2+	88.90585 1.3 3+ '	91.224 1.4 4+	92.9063	38 95.9 5+ 1.8	4 98. 6+ 1.9	9062 7+ 2.	101.07 2 3+	102.90550 2.2 3+	106.42 2.2 2+	107.8682 1.9 1-	2 112.41 + 1.7 2	1 114.8 2+ 1.7	18 118. 3+ 1.8	710 121. 4+ 2. 1.9	.760 1: 3+ 2.1	27.60 13 1 4+ 2	26.90447 .5 1-	131.293
Rubidium	Strontium	Yttrium	Zirconium	Niob	Molybo	län Tech	netium Rı	uthenium	Rhodium	Palladium	Silber	Cadmiur	n Indiu	m Zin	n ^{Z+} Anti	mon 3-	Tellur	lod	Xenon
CS 55	Ba 56	La 57	Hf 72	Ta 7	3 V	74 8 8	e 75 (DS 76	Ir 77	Pt 78	Au 79			81 Pb	82 Bi	83 P	0 84	At 85	Rn 86
0.7 1+ 0 Cäsium).9 2+ Barium	1.1 3+ Lanthan	1.3 4+ Hafnium	1.5 E	5+ 1.7 Wolfra	6+ 1.9 am Rhe	7+ 2.	2 4+	2.2 4+ Iridium	2.2 4+ Platin	2.4 3- Gold	+ 1.9 Quecksilb	2+ 2+ 1+ 1.8 er Thalliu	1+ 1.8 Ble	4+ 1.9 2+ Bis	3+ 2.0 mut Po	0 2+2 olonium	Astat	Radon
Fr 87	Ra 88	Ac 89	Rf 10 ²	1 Db 1	05 Sg `	106Bh	107H	IS 108	Mt 109	Ds 11	0 Rg 1′	I'Uub	112Uut	11 3 Uuc	11 4 U	p 115U	uh 118	Jus 117	Juo 11
0.7 1+ 0 Francium		1.1 3+ Actinium Ru	 utherfordiur	m Dubniur	 n Seaborg	ium Bol		Hassium	 Meitnerium	 Darmstadtiun	 Roentgeniui	m Ununbiu	 Muntri	mu	 adiumUnunp	 entium Unu		unseptium	 nunoctium
			Ü	e 58	Pr 59	Nd 60	Pm (61 Sm	62 Ei	u 63 G	d 64 T	b 65 I	0v 66	Ho 67	Er 68	Tm 6	. q <u></u>	70 Lu	71
	Lanthan	iden	6 1.1 2.1	0.116 1- 3+ 1	40.90765 .1 3+	144.242 1.1 3+	144.91	27 150. 3+ 1.2	.36 15 3+ 1.2	3+ 1:2 3+ 1:2	57.25 158 3+ 1.2	3.92535 3+ 1	162.500 .2 3+	1.2 3+	167.259 1.2 3+	168.9342 1.2 3	21 173.0 + 1.1)4 174.9 3+ 1.2	67 3+
				Cer	raseodym	Neodym	Promethi	um Samar	rium Eur	opium Gad	olinium	erbium D	ysprosium	Holmium	Erbium	Thulium	Ytterbi	um Luteti	E
			3 ゴ	1 90 1 13806 2	Pa 91	U 92	Np 9	3 Pu	94 Ar	n 95 CI	m 96 B	7 070	Cf 98	Es 99	Fm 10(0 Md 1(01 No 1	102 Lr 1	03
	Actin	Iden	1.3	4+ 1	5 5+	1.4 6+	- 1.3	5+ 1.3	4+ 1.3	3+ 1.3	3+ 1.	3 3+ 1	.3 3+	1.3 -	1.3 -	1.3 -	- 1.3		3 '
			Ę	orium Pr	otactinium	Uran	Neptuniu	um Plutor	nium Ame	ericium C	ırium Be	rkelium C	alifornium	Einsteinium	Fermium	Mendeleviu	ım Nobeli	um Lawren	ium

Reduzierte Form	≓ Oxidierte Form	+ <i>z</i> e ⁻	Standardpotential E° in V
Li	\rightleftharpoons Li ⁺	+ e ⁻	-3,04
К	$\rightleftharpoons \mathrm{K}^+$	+ e ⁻	-2,92
Ba	\Rightarrow Ba ²⁺	$+2e^{-}$	-2,90
Ca	\rightleftharpoons Ca ²⁺	$+2e^{-}$	-2,87
Na	\Rightarrow Na ⁺	+ e ⁻	-2,71
Mg	\Rightarrow Mg ²⁺	$+2e^{-}$	-2,36
Al	$\Rightarrow Al^{3+}$	$+3e^{-}$	-1,68
Mn	\Rightarrow Mn ²⁺	$+2e^{-}$	-1,19
Zn	\rightleftharpoons Zn ²⁺	$+2e^{-}$	-0,76
Cr	\rightleftharpoons Cr ³⁺	$+3 e^{-}$	-0,74
S ²⁻	⇒S	$+2e^{-}$	-0,48
Fe	\Rightarrow Fe ²⁺	$+2e^{-}$	-0,41
Cd	\rightleftharpoons Cd ²⁺	$+2e^{-}$	-0,40
Concentration	\Rightarrow Co ²⁺	$+2e^{-}$	-0,28
Sn	\Rightarrow Sn ²⁺	$+2e^{-}$	-0,14
Pb	$\rightleftharpoons Pb^{2+}$	$+2e^{-}$	-0,13
Fe	\Rightarrow Fe ³⁺	$+3e^{-}$	-0,036
$H_2 + 2 H_2O$	$\Rightarrow 2 H_3 O^+$	$+2e^{-}$	0
Sn ²⁺	\Rightarrow Sn ⁴⁺	$+2e^{-}$	+0,15
Cu+	\rightleftharpoons Cu ²⁺	+ e ⁻	+0,15
$SO_2 + 6H_2O$	\Rightarrow SO ₄ ²⁻ + 4 H ₃ O ⁺	$+2e^{-}$	+0,17
Cu	\rightleftharpoons Cu ²⁺	$+2e^{-}$	+0,34
Cu	\rightleftharpoons Cu ⁺	+ e ⁻	+0,52
2 I-	\rightleftharpoons I ₂	$+2e^{-}$	+0,54
$H_2O_2 + 2 H_2O$	$\Rightarrow O_2 + 2 H_3 O^+$	$+2e^{-}$	+0,68
Fe ²⁺	\Rightarrow Fe ³⁺	+ e ⁻	+0,77
Ag	$\rightleftharpoons Ag^+$	+ e ⁻	+0,80
Hg	\rightleftharpoons Hg ²⁺	$+2e^{-}$	+0,85
$NO + 6 H_2O$	$\Rightarrow NO_3^- + 4H_3O^+$	$+3e^{-}$	+0,96
$2 Br^{-}$	\Rightarrow Br ₂	$+2e^{-}$	+1,07
6 H ₂ O	$\Rightarrow O_2 + 4 H_3 O^+$	$+4e^{-}$	+1,23
$2 \mathrm{Cr}^{3+} + 21 \mathrm{H}_2\mathrm{O}$	\Rightarrow Cr ₂ O ₇ ²⁻ + 14 H ₃ O ⁺	+6e ⁻	+1,33
2 Cl-	\rightleftharpoons Cl ₂	$+2e^{-}$	+1,36
$Pb^{2+} + 6H_2O$	\Rightarrow PbO ₂ + 4 H ₃ O ⁺	$+2e^{-}$	+1,46
Au	\Rightarrow Au ³⁺	$+3e^{-}$	+1,50
$Mn^{2+} + 12 H_2O$	\Rightarrow MnO ₄ ⁻ + 8H ₃ O ⁺	$+5e^{-}$	+1,51
$3 H_2 O + O_2$	$\Rightarrow O_3 + 2H_3O^+$	$+2e^{-}$	+2,07
2F ⁻	\rightleftharpoons F ₂	$+2e^{-}$	+2,87