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a Institute of Nanotechnology, Forschungszentrum Karlsruhe,

P.O. Box 3640, D–76021 Karlsruhe, Germany

b Lehrstuhl für Theoretische Chemie, Institut für Physikalische Chemie,

Universität Karlsruhe (TH), D–76128 Karlsruhe, Germany

c Institut für Anorganische Chemie,

Universität Karlsruhe (TH), D–76128 Karlsruhe, Germany

d CNRS, UPR 8641, Centre de Recherche Paul Pascal (CRPP) Equipe ”Matériaux

Moléculaires Magnétiques” 115 avenue du Dr. Albert Schweitzer, Pessac, F-33600, France
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Abstract

A new structural model for the oxygen evolving center in photosystem II was recently synthesized

and characterized by Hewitt et al. [Chem. Commun. 2006, 2650]. A simplified Heisenberg

model Hamiltonian with only two independent constants was applied to extract the magnetic spin-

coupling constants Jij of the mixed valent Mn4 system. In the present study, all six possible

coupling constants are calculated by ab initio methods in order to obtain a detailed understanding

of the magnetic behavior of the system. The broken symmetry approach of Noodleman is applied

using density functional theory (DFT). Two different approaches are compared. On the one hand,

the coupling constants are obtained from calculations on eight different determinants which describe

the high-spin state as well as different broken-symmetry states of the tetranuclear cluster. On the

other hand, a pair approach that permits a direct calculation of the individual coupling constants

is used. For the pair approach, the coupling constants are also obtained from modified CASCI

(Complete Active Space Configuration Interaction) calculations. With the different sets of coupling

constants, the full Heisenberg Hamiltonian of the four center problem is used to calculate the

magnetic susceptibilities, which are then compared with the experimental values.
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I. INTRODUCTION

In nature, the photo-induced oxidation of water to dioxygen 2H2O→ O2 + 4e− + 4H+

is efficiently catalyzed by a manganese/calcium complex (Mn4Ca), which is part of the

multi-protein photosystem II (PS II) assembly.[1] Already in 1970, Kok and coworkers[2]

proposed a possible mechanism for the water-splitting reaction, cycling the manganese atoms

through different oxidation states Si (i = 0, 1, 2, 3 or 4). However, the mechanism of the

water-splitting reaction and the structure of the oxygen evolving center (OEC) of PS II are

still under debate.[3–5] Regarding the literature, neither the structure of the OEC nor the

oxidation states of the four manganese atoms in the different Si states of the Kok cycle are

absolutely clear.

A serious problem lies in the identification of the structure of the reactive center. X-

ray absorption spectroscopy (XAS) has been applied successfully, but the interference with

the protein environment of PS II and possible damage to the structure by high-energy

radiation make a clear assignment difficult. A detailed investigation of a small model cluster,

where the structure and the oxidation states of the manganese atoms are well known, could

assist in understanding the spectra of the native system and help to identify the several

possible oxidation states of the manganese atoms in the different Si states of the Kok cycle.

Investigating the magnetism of such a small model system could also give insight into the

question whether magnetic properties play an important role in the catalytic process or not.

In 2006, Hewitt et al .[6] succeeded to synthesize a set of model clusters, following the

cubane-like structural motive that was proposed by Ferreira et al.[3] One of these model

clusters, [CaMnIII
3 MnII(µ4-O)L3Cl2(O2CMe)1.2(H2O)1.5-(MeOH )0.3]Cl0.8·5MeOH (structure

1 of Ref.6, see Figure 1) serves as a possible model for the S0 Kok state and yields a

S = 1
2

ground state, which is in nice agreement with an EPR study of Messinger et al.[7]

L denotes a Schiff-base ligand, which is obtained from the condensation of o-vanillin and

2-hydroxypropylamine. An investigation of the magnetic behavior of this model system was

performed using a simplified model Heisenberg Hamiltonian, in which the values of the six

possible coupling constants Jij of the Mn4 system were restricted by the approximations

visualized in Figure 2 to avoid overparametrization in the fitting procedure.[6] First, accord-

ing to the literature[6], the coupling through the central oxygen atom was considered to be

negligible, thus J12 and J23 were set to zero. Second, the coupling between similarly bridged
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centers was considered to be identical, therefore J14, J24, and J34 were restricted to the same

value. Finally, the coupling between the Mn centers 1 and 3 by the CH3COO− group was

considered to be large and antiferromagnetic (J13 < 0).

In the present work, we investigate whether these approximations can be justified by

ab initio calculations. There are in general two approaches to obtain exchange coupling

constants by quantum chemical calculations.

On the one hand, the different electronic states of the system can be directly calculated

by multi-reference wavefunction-based methods. With these methods, dynamic electron

correlation effects can be included and the calculated wavefunctions are eigenfunctions of

the Hamiltonian of the molecule as well as of Ŝ2. Unfortunately, applications of multi-

reference based methods are restricted to relatively small systems.[8] They are not applicable

to a system such as the present Mn4Ca cluster because the effort increases exponentially

with the number of magnetic centers. A way out of this problem may be the pairwise

calculation of J values, however. As has been shown by Illas an coworkers,[9] for example, the

coupling constants of a system with more than two centers can be obtained from independent

calculations on systems with two magnetic centers.

On the other hand, density functional theory (DFT) using the broken symmetry (BS)

approach of Noodleman [10, 11] is widely used to obtain coupling constants. This method

can be used on relatively large systems. A recent example is the treatment of a Mn19 cluster

by Ruiz et al.[12] In the DFT-BS approach, the high-spin Kohn–Sham (KS) determinant

is usually well described, and the exchange coupling constants can be obtained from the

difference between the energy of the high-spin state and the energy of broken-symmetry KS

determinants, in which the spins of the localized magnetic orbitals [13] are changed from α

to β on some of the centers.

Unfortunately, this Noodleman treatment must be regarded with care, since the broken

symmetry KS determinants are in general not eigenfunctions of Ŝ2. For a detailed discussion

on the proper use of DFT for the extraction of exchange coupling constants, see for instance

Refs.14–16 . Alternatively, the constrained DFT approach[16, 17] can be applied, which

directly derives the Ising configurations of the system from the density response.

The BS approach has successfully been used in such cases where the local electronic states

at the metal centers are spatially nondegenerate. In other cases, it can be necessary to include

spin–orbit coupling into the calculations.[18, 19] Mn3+ is a d4 system and in Oh symmetry the
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ground state would be a 4T2g state. This state is split by the surrounding external ligand field.

We have performed Complete-Active-Space Self-Consistent-Field (CASSCF) calculations on

mononuclear model complexes to assure that the local ground state can be described by a

single determinant and spin–orbit coupling has not to be taken into account. In the present

study, the BS approach of Noodlemann is applied using DFT and the Ising approximation,

which is considered to provide a reasonable mapping [20, 21] onto the Heisenberg model. The

investigation of the magnetic behavior of the model system is extended to the calculation

of all six possible exchange coupling constants. In addition, a pair approach that permits

a direct calculation of Jij is applied, and furthermore, the coupling constants are obtained

by modified Complete-Active-Space Configuration-Interaction (CASCI) calculations [19] for

the pair approach. Both approaches are directly compared with experimental values for

the magnetic susceptibilities, which are computationally accessible through a Boltzmann

average.[13] Finally, a fitting procedure was performed, using the conjugate-gradient method

of Polak–Ribiere.[22] The ab initio Jij values were taken as the starting points for the

minimization procedure, leading so far to the best available estimates of the couplings of

the present system.

II. THEORY

A. Exchange coupling constants

The Heisenberg–Dirac–Van-Vleck (HDV) Hamiltonian is defined as

ĤHDV = −2
N∑

i<j

Jij Ŝi · Ŝj , (1)

where N denotes the number of different local spin centers i with the spin operator Ŝi.

Jij is the magnetic spin-coupling constant between the spin centers i and j. Jij is positive

for ferromagnetic and negative for antiferromagnetic coupling. The HDV Hamiltonian is

widely used to describe the magnetic properties of molecules as well as solids. As soon as

the coupling constants are known, the magnetic properties of the system can be determined

as shown in the next section. The objective of the present work is to obtain the values for

Jij by quantum chemical calculations. The straightforward solution would be to calculate

the low-lying electronic states of the molecule and to determine those values of Jij for which
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the correct energy levels of the complex are generated by the HDV Hamiltonian. Such a

procedure is often used for binuclear complexes, but at present it is not applicable for title

compound, because the eigenfunctions of this molecule are multi-reference wavefunctions.

In the present work, this procedure based on multi-reference wavefunctions is only used to

obtain J values at the CASCI level for binuclear model complexes.

As used in the broken symmetry approach of Noodleman [10, 11] and justified by Illas

and coworkers,[20, 21] the energy eigenvalue spectrum of the HDV Hamiltonian can be

approximated by coupling constants obtained with the Ising Hamiltonian,

Ĥ Ising = −2
N∑

i<j

Jij Ŝz,iŜz,j . (2)

Compared to the HDV Hamiltonian, this is a replacement of the spin operator Ŝi by its

z-component Ŝz,i. Assuming orthogonality, the high-spin configuration ΦHS, in which all

unpaired electrons possess α spin, as well as the broken-symmetry states ΦBS, in which the

spins of all unpaired electrons at selected magnetic centers are changed from α spin to β

spin, are eigenfunctions of the Ising Hamiltonian.

Since the eigenvalue of the Ŝz,i operator with one of the ΦBS states is given by

Ŝz,i|ΦBS〉 = ±Si|ΦBS〉 , (3)

the eigenvalues of the Ising Hamiltonian,

Ĥ Ising|ΦBS
l 〉 = EBS|ΦBS〉 , (4)

can easily be evaluated from the Jij values.

In the present case, eight different spin states have to be taken into account to obtain

the exchange coupling constants. The states as well as their eigenvalues in terms of Jij are

listed in Table I. The investigated cluster is a mixed valent Mn4 system, which contains

three Mn3+ (d4) center (labeled with numbers 1–3) with total spin S = 2 and one Mn2+

(d5) center with S = 5
2

(labeled with number 4). The energies E1–E8 are computationally

obtained at the DFT level and the magnetic coupling constants Jij are calculated by a

least-squares fit to the equations of Table I.

Alternatively, we perform DFT calculations on model clusters with only two magnetic

centers. The coupling constants between two interacting centers with identical spins (S1 =
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S2) can directly be calculated with the original Noodlemann formula[10]

J12 =
EBS − E(S1 + S2)

S2
max

, (5)

where EBS denotes the energy of the broken-symmetry KS determinant. The high-spin

energy is given as E(S1 + S2) and the maximum spin of the system is Smax. In the present

case, a mixed valent Mn system is investigated. Therefore, the two-center problem with

identical spins has to be extended to two different spin centers. For the case S1 6= S2 the

formula[16, 23, 24]

J12 =
EBS − E(S1 + S2)

4S1S2

(6)

is used.

B. Magnetic susceptibilities

Once the exchange coupling constants Jij are known, the full HDV Hamiltonian can be

set up according to Eq. (1). The isotropic Zeeman interaction with the external magnetic

field B is taken into account by adding the term

ĤZ(B) =
N∑
i

µBgimsi
(7)

to the HDV operator

Ĥ(B) = ĤHDV + ĤZ(B) . (8)

µ denotes Bohr’s magneton

µ =
e~
2m

, (9)

where m is the electronic mass and gi is the effective g factor of center i, which can sig-

nificantly deviate from the electronic g factor (ge=2.0023) due to spin–orbit coupling. For

Mn2+, ge=2.0023 is used, whereas g = 1.94 is chosen for the Mn3+ centers.[6] The energy

eigenvalues of the HDV operator are now accessible via

Ĥ(B)Φ(S,Ms) = E(B)Φ(S,Ms) (10)

with respect to all possible spin states Φ(S,Ms) by diagonalizing Ĥ(B). Then, the magnetic

susceptibility χ(T ) as a function of the temperature T can be evaluated from the Boltzmann
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average

χ(T ) = µ0
M

B
= −µ0

NA

B2

∑n
i=1(Ei(B)− Ei(B = 0)) exp(−Ei(B)

kT
)∑n

i=1 exp(−Ei(B)
kT

)
(11)

over all n possible spin states.[13] NA denotes Avogadro’s number, M is the macroscopic

molar magnetization and µ0 is the vacuum permeability. In this manner, a direct comparison

with experimentally measured susceptibilities is possible.

III. COMPUTATIONAL DETAILS

All DFT calculations were performed with the Turbomole program package.[25] The

structure was optimized with the BP86 functional [26, 27] of Becke and Perdew, using

the def2-TZVP basis set of Weigend et al.[28] The magnetic spin-coupling constants were

calculated at the B3LYP[29]/def2-TZVP level, since the use of the hybrid B3LYP functional

has been shown to be a good choice for the calculation of exchange coupling constants.[30–34]

For all calculations, the resolution of the identity approximation (RI) [35–37] was applied.

For the calculation of the magnetic susceptibilities according to Eqs. (7)– (11) a Fortran

program by Staemmler et al.[38, 39] was generalized to an N -center problem. Applications

on complexes with four and more magnetic centers are possible, but note that the number of

spin states that have to be considered increases exponentially with the number of involved

metal centers. Future applications will be limited to a relatively small number of centers.

For the fitting procedure of the ab initio coupling constants to experimental susceptibilities,

the conjugate gradient method of Polak–Ribiere was applied.[22]

The CASSCF calculations were performed with the Bochum package of ab initio

programs.[40, 41] We used Huzinaga basis sets [42] for the main group elements. For the

atoms which are nearest neighbors to the magnetic centers, we used an 11s7p basis set

contracted to 7s5p and extended by a d-function (exponents, N: 1.0, O: 1.2). The other

main group atoms were described by a DZ basis set without further polarization functions.

The Mn centers were equipped by a Wachters 15s9p5d basis set [43] contracted to 6s4p3d.

An internal contraction was used for the Mn s and p orbitals. In general, all 3d orbitals

at the Mn centers were considered as active space in the CASSCF calculations. For the

mononuclear model clusters, we always performed state-averaged CASSCF calculations, for

the binuclear clusters, different schemes were used.
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IV. RESULTS

A. Molecular structure

A comparison between the Mn-Mn distances and angles of the optimized structure with

the X-ray diffraction (XRD) data is given in Table II. It shows that the DFT optimized Mn4

cage differs in particular for the Mn1-Mn2 and Mn1-Mn3 distances from the XRD structure,

with deviations about 9 and 8 pm respectively, while almost no difference is observed for

the angles. The enlargement of the Mn-Mn distances can be explained with the formation

of a hydrogen bond between a water group and a bridging oxygen atom (O95, see Table III)

of the CH3COO− group that connects the Mn1 and Mn3 centers. The Mn3-O95 distance

changes about 15 pm and the H-O distance of the hydrogen bridge is 175 pm, which lies in

the typical range (≈ 180 pm) for hydrogen bonds.

It is possible that the observed change in the distances determines a change in the occu-

pation of the manganese centers, in particular at the Mn3 center, whose coordination sphere

has mostly been changed. Therefore, CASSCF calculations were performed on a small model

system, which is depicted in Figure 3. In the model system, only the first coordination sphere

around the Mn3 center is included and the cluster is saturated by hydrogen atoms. A com-

parison between the CASSCF results for a model system based on the XRD Mn-O, Mn-Cl

and Mn-N bond distances and a second model based on the optimized structure indicates

that for the Mn3 center no changes in the occupation due to the change in the Mn-O distance

are observed. The Cl-Mn-O axis has been identified as the Jahn-Teller distortion axis. In

the ground state, the eg type orbital perpendicular to this axis is unoccupied.

For all three Mn3+ systems, a significant splitting of the low lying electronic states is

observed as can be seen in Table IV. The orbital occupation of the tetranuclear cluster

should therefore be unambiguous.

Since the calculated exchange coupling constants are strongly affected by geometrical

changes (cf. Tables V and VI), the results based on the XRD structure are considered to

be more realistic and are used for the interpretation of the magnetic properties of the title

compound.
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B. Spin-coupling constants

First, we present the coupling constants obtained from fitting six constants to the eight

energies given in Table I. A comparison between the calculated exchange coupling constants

for the optimized and the XRD structures is given in Table V. The results for the optimized

geometry are found to be smaller than for the XRD structure. Exception are J23 and J24,

where the situation is reversed. The results for J24 are almost identical and the difference

between the J23 values is small (1.6 K). The largest deviations with 6 and 3 K are found for

J13 and J14, which are due to the observed geometrical changes of the Mn cluster core, in

particular between the Mn1 and Mn3 centers.

The calculations indicate that the neglection of the couplings through the central oxygen

atom (J12 ≈ J23 ≈ 0), is not justified. These couplings are identified to be nonidentical and

ferromagnetic. For the XRD structure, the calculations confirm that the coupling between

the center Mn1 and Mn3 through the CH3COO− group is indeed the largest antiferromangetic

coupling constant of the whole system. Although the calculations do not confirm that the

coupling constants J14, J24 and J34 are identical (≈ −5 K), the results show that they are

all in the same range between −5.7 and −7.5 K.

The absolute values of the antiferromagnetic coupling constants for the XRD structure

are in all cases larger than those estimated from experiment, while except for J24, the

opposite trend is seen for the J ’s for the optimized structure. However, for both structures,

all calculated values are in the range suggested by the fit to the experimental data.

In the next step, we investigate whether the observed exchange is dominated by the

interaction between directly neighboring Mn centers. Therefore, the exchange coupling

constants of every two manganese pairs were calculated in a pair approximation by replacing

the other manganese centers of the complex with Al3+ for Mn3+ and Mg2+ for Mn2+, which

do not contribute to the coupling, since they provide a closed-shell Ne-like core.

The results of the two center interactions are summarized in Table VI. Although replacing

the non-direct neighbors by aluminium and magnesium the same trends as for the complete

manganese system are observed for the coupling constants based on the optimized and

XRD structures. The comparison to the results based on the XRD structure show that the

results of the two-center interactions are very similar (±0.6 K) to those obtained for the

tetranuclear cluster. Exceptions are J13 and J14. Here, the calculated results differ with
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+1.5 K and −2.3 K from those where all Mn atoms are included.

In the third step, we construct binuclear model complexes which contain only two of

the magnetic ions, their nearest neighbors saturated with hydrogen atoms, and the bridg-

ing units. Then we calculate the coupling constants with the modified CASCI method as

described in Ref. 19. For the systems with one Mn(III) and one Mn(II) center, we per-

form a state-averaged CASSCF calculation for all five low lying decet states, in which four

electrons are localized at the Mn(III) center and five electrons at the Mn(II) center (neu-

tral configurations). The partly occupied orbitals are transformed into localized magnetic

orbitals by a Foster–Boys localization procedure[44] We perform a Valence Configuration

Interaction calculation (VCI) in the space of these orbitals for states with ms = 3.5 and

obtain JVCI from the energy difference of the lowest octet and decet state. These two states

were well separated in energy. Jf is obtained from a CI calculation in the subspace of the

neutral configurations. The energies of the charge-transfer states, which are important for

the super-exchange coupling, are too high in the VCI calculations, because at this level of

calculation, the charge-transfer states are described with the orbitals of the neutral con-

figurations. The error in the energy of the charge-transfer states can be estimated from

calculations on mononuclear clusters. First, the orbitals for the neutral configurations are

obtained by state-averaged CASSCF calculations for Mn(III) centers and a self-consistent-

field calculation for the Mn(II) center. Next, the energy expectation values of the systems

with one additional electron, and with one electron less, are calculated with these orbitals.

In the last step, the orbitals are relaxed and the energy difference for unrelaxed and relaxed

orbitals is obtained. The relaxation energy for the charge-transfer states in the binuclear

complex is then obtained as the sum of the relaxation energies of the two centers (see Erel

in Table VII). In the modified CASCI calculations, the charge-transfer states are lowered

by the relaxation energy Erel. Because of the lower energy, the weight of the charge-transfer

states, and in consequence the super-exchange coupling, is increased in the modified CASCI

(MCI) calculations. The resulting coupling constants JMCI are much more reliable than JVCI.

For the coupling of two Mn(III) centers, we perform state-averaged CASSCF calculations

in the space of the ten 3d orbitals for the four lowest high-spin states. Next, we perform

CASSCF calculations on the lowest nonet and septet state and obtain natural orbitals for

those states. In the ground state, only four of the 3d orbitals are occupied at each center.

The occupied and unoccupied orbitals are localized individually and the coupling constants
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are obtained in the same manner as described above.

The results are summarized in Table VII. For the antiferromagnetic couplings J14, J24,

J34, and J13, the agreement between the modified CASCI and the DFT calculation is really

excellent. The DFT values are slightly larger than the modified CASCI values, but the

deviations are small. The situation is different for the coupling constants J12 and J23. While

these coupling constants were found to be ferromagnetic in the DFT calculations, they

are slightly antiferromagnetic in the modified CASCI calculations. To exclude that this

difference is caused by the different cluster models, we calculated the exchange coupling J12

at the DFT level for the small cluster. The calculations yielded an even somewhat larger

ferromagnetic coupling of J12 = 9.9 K. So far, the results from the modified CASCI approach

show the best agreement with the experimentally obtained values.

C. Magnetic susceptibilities

Based on the calculated coupling constants, temperature dependent magnetic suscepti-

bilies were calculated. A comparison with the experimental measurement is given in Figure

4. Clearly, the geometrical changes between the optimized and XRD structures lead for

the optimized and the two-center coupling constants to an upward shift of the χT versus T

curves. In contrast, the values that are based on the XRD structure are very close to the

experimental values.

The XRD-structure-based curves and the experiment are compared in detail in Figure

5. The agreement between the calculations and the experiment is very good in the range of

14–300 K, but in the low temperature range (1.8 –13 K), the susceptibilities that are based

on the DFT coupling constants of the tetranuclear cluster show a different behavior from the

measured data and are nearly constant. This trend is not seen for the curve that is based on

two-center interactions, although the values of the coupling constants are very similar. The

deviations range between 0.1 K (J34) and 2.3 K (J14). Thus, the system reacts very sensitive

to small changes in the coupling constants. As expected, because the coupling constants

are very similar, the curve based on the modified CASCI coupling constants shows the best

agreement with the experiment.

Finally, the calculated exchange couplings were taken as start values for a least-squares

fitting procedure to experimental magnetic susceptibilities. The results are listed in Ta-
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ble VIII. Both DFT starting values lead to almost the same minimum with a maximum

absolute deviation of 0.9 K, which is found for J14. Figure 6 shows that a good agreement

with experiment is obtained for clearly different coupling constants. The values obtained

from the fit should hence be regarded with some care.

Analyzing the energy eigenvalues of the model Heisenberg Hamiltonian allows the de-

termination of the resulting total spin state of the system, which is summarized for all

employed quantum chemical models in Table IX. When the total spin state equals 1
2

then

the corresponding coupling constants lead to a correct theoretical description of the overall

shape of the experimental χT versus T curve. In particular the correct description of the

low temperature range is important, since different total spin states result.

So far, the MCI description of the coupling constants with the two-center interactions

seems (from a quantum chemical point of view) to be the best estimate for the exchange

coupling constants for the present Mn4 system. Although being a rough estimate, since the

cluster had to be cut into small model systems, it describes the experimental results very

well, avoiding a fitting procedure. Furthermore it gives the correct trends and the correct

total spin.

V. SUMMARY

In the present work, the magnetic exchange couplings on the mixed valent Photosystem

II like model compound of Hewitt et al. were investigated at the DFT level, using the

broken-symmetry approach. The six coupling constants for the investigated Mn2+/Mn3+

system were obtained by a fit to the energies of eight Kohn–Sham determinants. The re-

sults were compared with pure two-center interactions, created by replacing Mn2+/Mn3+

with Mg2+/Al3+ atoms. They were very similar with a maximum deviation of 2.3 K. In all

DFT calculations, J12 and J23, which were neglected in previous work,[6] were ferromag-

netic, whereas they were small and antiferromagnetic in the modified CASCI calculations

on smaller model complexes.

Based on the calculated coupling constants, temperature dependent magnetic suscepti-

bilities were calculated and compared with experimental measurements. The susceptibilities

based on the full optimized coupling constants show a good agreement with experiment for

high temperatures, but differ in the low temperature range. In contrast, the results based
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on the pairwise interactions give an overall good agreement with experiment. The results

show that even small changes in the coupling constants have drastic consequences for the

whole system, such as different total spin states. The best agreement with the measured

susceptibilities was observed for the coupling constants obtained with the modified CASCI

approach. It seems that the coupling constants for the coupling of two Mn(III) centers by

the central oxygen are too ferromagnetic in the broken symmetry DFT approach.

The results for the coupling constants J13, J14, J24, and J34 can be regarded as trustworthy,

since all calculations show the same trends and are in good agreement with experiment.
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TABLE I: High-spin state and broken symmetry spin states of the investigated Mn4 com-

plex (S1 = S2 = S3 = 2, S4 = 5
2) and corresponding total Ising energies.

spin state S1 S2 S3 S4 energy

ΦHS
1 α α α α EHS

1 = −2[4J12 + 4J13 + 5J14 + 4J23 + 5J24 + 5J34]

ΦBS
2 α α α β EBS

2 = −2[4J12 + 4J13 − 5J14 + 4J23 − 5J24 − 5J34]

ΦBS
3 α α β α EBS

3 = −2[4J12 − 4J13 + 5J14 − 4J23 + 5J24 − 5J34]

ΦBS
4 α β α α EBS

4 = −2[−4J12 + 4J13 + 5J14 − 4J23 − 5J24 + 5J34]

ΦBS
5 β α α α EBS

5 = −2[−4J12 − 4J13 − 5J14 + 4J23 + 5J24 + 5J34]

ΦBS
6 α α β β EBS

6 = −2[4J12 − 4J13 − 5J14 − 4J23 − 5J24 + 5J34]

ΦBS
7 α β α β EBS

7 = −2[−4J12 + 4J13 − 5J14 − 4J23 + 5J24 − 5J34]

ΦBS
8 α β β α EBS

8 = −2[−4J12 − 4J13 + 5J14 + 4J23 − 5J24 − 5J34]

TABLE II: Calculated BP86/def2-TZVP Mn-Mn distances in pm and an-

gles in ◦ in comparison to XRD data[6].

BP86 XRD BP86 XRD

Mn1-Mn2 336.4 327.3 ∠ Mn1-Mn2-Mn3 63.5 63.1

Mn1-Mn3 348.3 339.9 ∠ Mn1-Mn2-Mn4 63.5 63.1

Mn1-Mn4 355.3 351.3 ∠ Mn1-Mn3-Mn4 61.5 60.9

Mn2-Mn3 325.4 322.6 ∠ Mn2-Mn3-Mn4 60.4 61.0

Mn2-Mn4 338.8 343.9

Mn3-Mn4 347.1 353.4
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TABLE III: Selected calculated BP86/def2-TZVP bond distances in pm and angles

in degres in comparison with XRD data.[6]

BP86 XRD BP86 XRD

Mn1-O9 194.8 191.0 Mn3-O88 194.2 191.2

Mn1-O10 190.9 187.5 Mn3-O66 190.7 187.3

Mn1-O32 197.9 194.4 Mn3-O95 237.5 221.8

Mn1-O94 216.7 214.8 Mn3-O9 195.3 190.5

Mn1-N20 198.7 197.3 Mn3-N76 197.4 197.1

Mn1-Cl6 283.5 279.2 Mn3-Cl7 255.5 266.1

Mn2-O60 194.8 193.0 Mn4-O88 223.4 216.8

Mn2-O38 191.8 192.1 Mn4-O89 265.8 238.3

Mn2-O9 197.2 193.1 Mn4-O32 229.8 224.3

Mn2-Cl6 264.6 257.0 Mn4-O33 238.0 225.7

Mn2-Cl7 258.0 258.5 Mn4-O38 215.0 212.3

Mn2-N48 198.6 195.9 Mn4-Cl8 229.4 244.3

∠ O32-Mn1-N20 90.14 60.97 ∠ Mn2-O38-Mn4 112.69 116.46

∠ N20-Mn1-O10 82.80 89.34 ∠ Mn2-O38-C39 112.04 113.53

∠ O9-Mn1-O10 90.82 84.79 ∠ Mn2-O9-Mn1 118.20 116.88

∠ O9-Mn1-O32 95.50 89.33 ∠ Mn2-O9-Mn3 112.04 114.48

∠ Mn1-O9-Mn3 126.45 96.15 ∠ Mn3-O9-Mn1 126.45 125.94

∠ Mn1-O9-Mn2 118.20 125.94 ∠ O66-Mn3-O95 81.76 90.09

∠ Mn1-O32-Mn4 112.09 116.88 ∠ O66-Mn3-O88 172.04 174.81

∠ Mn1-Cl6-Mn2 75.63 113.89 ∠ O33-Mn4-O88 142.41 151.85

∠ O60-Mn2-Cl6 88.40 75.12 ∠ Cl8-Mn4-O33 90.28 93.77

∠ O38-Mn2-Cl6 93.66 89.92 ∠ Cl8-Mn4-O38 105.31 104.07

∠ Cl6-Mn2-O9 82.30 92.67 ∠ Mn4-O38-Mn2 112.69 116.46

∠ O60-Mn2-N48 88.72 84.63 ∠ O32-Mn4-O88 96.47 100.19

∠ Mn4-O88-Mn3 112.26 119.90
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TABLE IV: CASSCF calcula-

tions on mononuclear Mn3+ clus-

ters: Relative energies of the five

quintet states in eV.

state Mn1 Mn2 Mn3

1 0.0 0.0 0.0

2 1.56 1.48 1.93

3 2.30 2.42 2.42

4 2.62 2.70 2.79

5 2.93 2.93 3.17

TABLE V: Calculated B3LYP/def2-

TZVP magnetic spin-coupling con-

stants (in K) in comparison with ex-

perimental results.[6]

B3LYPa B3LYPb Exp.

J12 5.6 6.8 0

J13 −7.6 −13.7 −10

J14 −4.1 −7.2 −5

J23 11.3 9.7 0

J24 −7.7 −7.5 −5

J34 −4.2 −5.7 −5

a The geometry was optimized at

the BP86/def2-TZVP level.

b Results are based on the XRD ge-

ometry.
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TABLE VI: Calculated B3LYP/def2-

TZVP magnetic spin-coupling con-

stants (in K) in comparison with ex-

perimental results.[6] The not directly

neighboring manganese atoms are re-

placed by Al+3 and Mg+2 atoms.

B3LYPa B3LYPb Exp.

J12 5.5 6.2 0

J13 −8.4 −15.2 −10

J14 −2.3 −4.9 −5

J23 11.1 9.1 0

J24 −7.9 −7.2 −5

J34 −4.0 −5.8 −5

a The geometry was optimized on

BP86/def2-TZVP level.

b Results are based on the XRD ge-

ometry.

TABLE VII: Coupling constants Jij in K

obtained with the modified CASCI method.

Coupling Erel JVCI Jf JMCI

J12 13.31 3.3 6.3 −1.2

J13 13.16 −0.7 6.2 −10.9

J14 11.04 −1.0 1.9 −4.1

J23 12.21 4.3 7.0 −1.7

J24 10.69 −2.2 4.3 −5.7

J34 10.54 −1.6 3.4 −5.4
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TABLE VIII: Fitted magnetic spin-

coupling constants (in K) in com-

parison with experimental results.[6]

Fita Fitb Fitc Exp.

J12 6.1 5.9 −0.3 0

J13 −14.6 −14.6 −9.6 −10

J14 −4.5 −3.6 −3.7 −5

J23 9.1 9.0 −1.7 0

J24 −7.0 −6.7 −5.1 −5

J34 −4.2 −4.5 −5.0 −5

a Based on the DFT coupling con-

stants for the tetranuclear clus-

ter.

b Based on the DFT coupling con-

stants for the pair interactions.

c Based on the modified CASCI

coupling constants.

TABLE IX: Overview of the calculated total spin states.

structure determination of J total spin state

XRD DFT 4 center interaction 3
2

XRD DFT 2 center interaction 1
2

XRD MCI 2 center interaction 1
2

optimized DFT 4 center interaction 5
2

optimized DFT 2 center interaction 3
2
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Fig. 1 Structure of the investigated molecule.(color code: black (C), grey (H), pink

(Mn), yellow (Ca), green (Cl), blue (N), red (O)).

Fig. 2 Assignment of the coupling constants according to Ref.6. (a) The coupling over

the central oxygen atom was considered to be negligible. Thus, J12 and J23 were

set to zero and the coupling between similarly bridged centers was considered

to be identical. (b) The coupling between the Mn centers 1 and 3 over the

CH3COO− group was considered to be large and antiferromagnetic.

Fig. 3 Structure of the Mn3 model system.

Fig. 4 Calculated magnetic susceptibilities for different exchange coupling constants in

comparison with experimental data and with the previous fit of Ref. 6. The

structure used is indicated in parenthesis.

Fig. 5 Calculated magnetic susceptibilities for different exchange coupling constants,

which are all based on the XRD structure, in comparison wtith experimental

data and with the previous fit of Ref. 6.

Fig. 6 Calculated magnetic susceptibilities for different exchange coupling constants,

which are all based on the XRD structure, in comparison with the experimental

data.[6] The curves refer to the fitted values of Table VIII.

22



FIG. 1: Structure of the investigated molecule.(color code: black (C), grey (H), pink (Mn), yellow

(Ca), green (Cl), blue (N), red (O))

(a) J12 = J23 = 0, J14 = J24 = J34 (b)J13 < 0

FIG. 2: Assignment of the coupling constants according to Ref.6. (a) The coupling over the central

oxygen atom was considered to be negligible. Thus, J12 and J23 were set to zero and the coupling

between similarly bridged centers was considered to be identical. (b) The coupling between the

Mn centers 1 and 3 over the CH3COO− group was considered to be large and antiferromagnetic.
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FIG. 3: Structure of the Mn3 model system.

FIG. 4: Calculated magnetic susceptibilities for different exchange coupling constants in comparison

with experimental data and with the previous fit of Ref. 6. The structure used is indicated in

parenthesis.
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(a)

(b)

FIG. 5: Calculated magnetic susceptibilities for different exchange coupling constants, which are

all based on the XRD structure, in comparison wtith experimental data and with the previous fit

of Ref. 6.
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(a) (b)

(c) (d)

(e) (f)

FIG. 6: Calculated magnetic susceptibilities for different exchange coupling constants, which are

all based on the XRD structure, in comparison with the experimental data.[6] The curves refer to

the fitted values of Table VIII.
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