

Advanced Functional Inorganic POMs, Coordination Clusters and Framework Materials

Dr. Masooma Ibrahim

Institute of Nanotechnology (INT)

Why POM Species Exist?

Why POM Species Exist?

Potent factors for the formation of molecular metal oxide aggregates: POMs

Control of the pH is required in order to avoid the formation of infinite powder solid oxides (MO₃ lattices). Thus, POM clusters can be "trapped" between mononuclear metal ions and the infinite metal oxides

Dark teal polyhedra: $\{MO_4\}$ and $\{MO_6\}$, light yellow polyhedron: $\{XO_4\}$, red spheres: O.

Why POM Species Exist?

The V^{IV,V}/Mo^{V,VI}/W^{V,VI} metal centers: Highest two oxidation states

Empty d-orbitals: strong **metal oxide** π **-bonding** in addition to the coordinative bond formed between metal centre and oxygen ligand. Ligand orbital (px, py) and metal d-orbitals of similar symmetry (d_{xy} , d_{yz} , d_{yz}). **Terminal M=O** with decreased basicity (and nucleophilicity)

Limits the growth of the metal-oxide structures and results in the formation of **discrete clusters** rather than in infinite solid-state structures.

A & B. green spheres are d⁰ Group V and Group VI transition metals V, Nb, Ta, Mo, W. A shows a distorted octahedron with a single yl-oxygen trans to a long M–O bond. B shows a distorted octahedron with two cis-yl-oxygen ligands

A. Müller, S. Roy, Coord. Chem. Rev. 2003, 245, 153

The ability to accept different numbers of oxygen ligands to form coordination polyhedra ranging from tetrahedral [MO₄] to pentagonal bipyramidal [MO₇] units.

Diversity in V-, Mo-and W-based POMs:

In contrast, elements such as Cr, Ta and Nb do not exhibit this versatile coordination geometry and consequently are limited in the number of polyoxoanions they are able to form.

E =	Estimated
C =	Calculated

Elements (oxidation	Coordination number	lonic radius/Å
state)		
Mo(V)	4	0.46
	6	0.61
Mo(VI)	4	0.41
	5	0.50
	6	0.59
	7	0.73
W(V)	6	0.62
W(VI)	4	0.42
	5	0.51
	6	0.60
V(IV)	5	0.53
	6	0.58
V(V)	4	0.35
	5	0.46
	6	0.54
Cr(V)	4	0.34
	6	0.49 (E)
Cr(VI)	4	0.26
	6	0.44 (C)
Ta(V)	6	0.64
Nb(V)	6	0.64
AI(III)	4	0.39
	5	0.48
	6	0.53

 $2 [CrO_4]^{2-} + 2 H^+ \rightleftharpoons [Cr_2O_7]^{2-} + H_2O$

Oxo-bridge formation via two step

2 $[CrO_4]^{2-}$ + 2 H⁺ \rightleftharpoons $[Cr_2O_7]^{2-}$ + H₂O

The configuration of $[Cr_4O_{13}]^{2-}$ chains in (a) $K_2Cr_4O_{13}$, (b) $Cs_2Cr_4O_{13}$

B.M. Casari, V. Langer, Acta Crystallogr C. 2005, 61,117-119.

Keggin-type aluminum polyoxocation

Olation mechanism

Hydroxo-bridge formation via a single step

J.P. Jolivet, C. Chaneac, D. Chiche, S. Cassaignon, O. Durupthy, J. Hernandez, Comptes Rendus Geosciences, 2011, 343, 113-122

Keggin-type aluminum polyoxocation

J.P. Jolivet, C. Chaneac, D. Chiche, S. Cassaignon, O. Durupthy, J. Hernandez, *Comptes Rendus Geosciences*, 2011, 343, 113-122

Classification of Polyoxometalates

1. Isopolyoxometalates (isoPOMs) 2. Heteropolyoxometalates (heteroPOMs)

Caballero, Jagoba Martín. "Hybrid polyoxometalates: synthesis, crystal structures, thermostructural behavior and anchoring to tailored polymeric surfaces." (2017)

Structural Isomers of Keggin Ion

L. C. W. Baker and J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794-3797

Isomerization: Structural Isomers of Keggin ion

L. C. W. Baker and J. S. Figgis, J. Am. Chem. Soc., 1970, 92, 3794-3797

Caballero, Jagoba Martín. "Hybrid polyoxometalates: synthesis, crystal structures, thermostructural behavior and anchoring to tailored polymeric surfaces." (2017)

A-Type and B-Type Keggin

[(XO₄)M₁₂O₃₆]ⁿ⁻

A. Tézé, A.G. Hervé, Inorganic Syntheses 1990, Vol. 27.

A-Type and B-Type Keggin

A. Tézé, A.G. Hervé, Inorganic Syntheses 1990, Vol. 27.

A-Type and B-Type Keggin

A. Tézé, A.G. Hervé, Inorganic Syntheses 1990, Vol. 27.

A-Type and B-Type Keggin

A-Type and B-Type Keggin

[(XO₄)₂W₁₈O₅₄]ⁿ⁻

Institute of Nanotechnology (INT)

All-Inorganic Lacunary POM Ligands

Trilacunary Wells-Dawson ion [P₂W₁₅O₅₆]¹²⁻

Trilacunary Keggin ion [GeW₉O₃₄]¹⁰⁻

The exposed surface oxygen atoms, formed by removal of a W_3O_6 trimer from a saturated or plenary POMs with TM.

Institute of Nanotechnology (INT)

Institute of Nanotechnology (INT)

Angew. Chem. Int. Ed. 2011, 50, 4708.

 $[\{Co_4(OH)_3PO_4\}_4(PW_9O_{34})_4]^{28-}$

Inorg. Chem. 2015, 54 (13), 6136.

Angew. Chem. Int. Ed. 2011, 50, 5961.

 $[Mn_{19}(OH)_{12}(SiW_{10}O_{37})_6]^{34}$

Inorg. Chem. 2013, 52, 8399.

 $[{\rm Ni}_{14}({\rm OH})_6({\rm H}_2{\rm O})_{10}({\rm HPO}_4)_4({\rm P}_2{\rm W}_{15}{\rm O}_{56})4]^{34\text{-}}$

Angew. Chem. Int. Ed. 2015, 54, 15574.

 $[{\rm Dy}_{30}{\rm Co}_8{\rm Ge}_{12}{\rm W}_{108}{\rm O}_{408}({\rm OH})_{42}({\rm OH}_2)_{30}]^{56-}$

Example

$Na_{34}[Mn_{19}(OH)_{12}(SiW_{10}O_{37})_{6}]$ ·115H₂O

B. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. van Tol, N. S. Dalal, K.-Yong Choi, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 5961-5964.

Institute of Nanotechnology (INT)

Institute of Nanotechnology (INT)

Protonated oxygens pink balls, Mn yellow balls, O red balls.

Mn₁₉ Core: Comparison

Kortz's {Mn₁₉-POM}

I. A. M. Pohl, L. G. Westin, M. Kritikos, Chem. Eur. J. 2001, 7, 3439.

Westin's {Mn₁₉-org}

$[\{Co_4(OH)_3PO_4\}_4(PW_9O_{34})_4]^{28} (Co_{16})$

M. Ibrahim, Y. Lan, B. S. Bassil, Y. Xiang, A. Suchopar, A. K. Powell, U. Kortz, Angew. Chem. Int. Ed. 2011, 50, 4708.

Institute of Nanotechnology (INT)

$[(Ni_{14}(H_2O)_{10}(OH)_6(PO_3(OH))_4(\alpha - P_2W_{15}O_{56})_4]^{34-}(Ni_{14})$

M. Ibrahim, Y. Xiang, B. S. Bassil, Y. Lan, A. K. Powell, P. de Oliveira, B. Keita, U. Kortz. Inorg. Chem. 2013, 52, 8399-8408.

$[\{Y(H_2O)_3\}_8(As_2W_{19}O_{68})_3(As_2W_{19}O_{66})(W_2O_6)_2(WO_6)]^{42-}$ (Y₈)

Masooam Ibrahim, Bassem S. Bassil, Ulrich Kortz, Inorganics, 2015, 3, 2, 267-278.

$[Ce_{20}Ge_{10}W_{100}O_{376}(OH)_4(H_2O)_{30}]^{56-}$

Color code: W black, Ce orange, Ge green, O red, WO₆ octahedra light blue

B. S. Bassil, M. H. Dickman, I. Römer, B. von der Kammer, U. Kortz, Angew. Chem. Int. Ed. 2007, 46, 6192–6195.

Functionalized 3d-4f Heterometallic POMs: A new Type

$[Dy_{30}Co_8Ge_{12}W_{108}O_{408}(OH)_{42}(OH_2)_{30}]^{56-} \{Dy_{30}Co_8\}$

M. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed, 2015, 54, 15574.