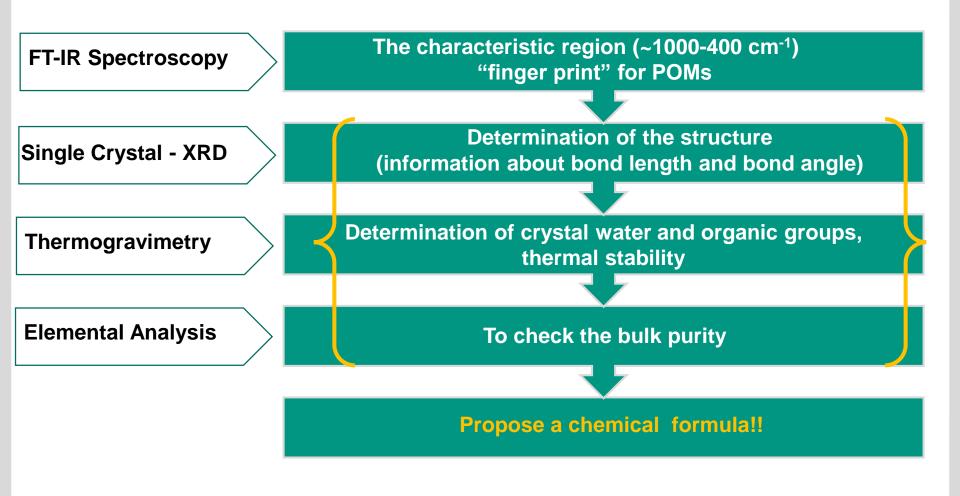
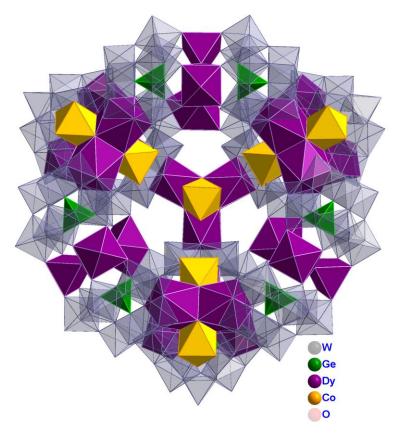


Advanced Functional Inorganic POMs, Coordination Clusters and Framework Materials


Dr. Masooma Ibrahim

Institute of Nanotechnology (INT)

Solid State Characterization Techniques



Institute of Nanotechnology (INT)

Solid State Characterization Techniques

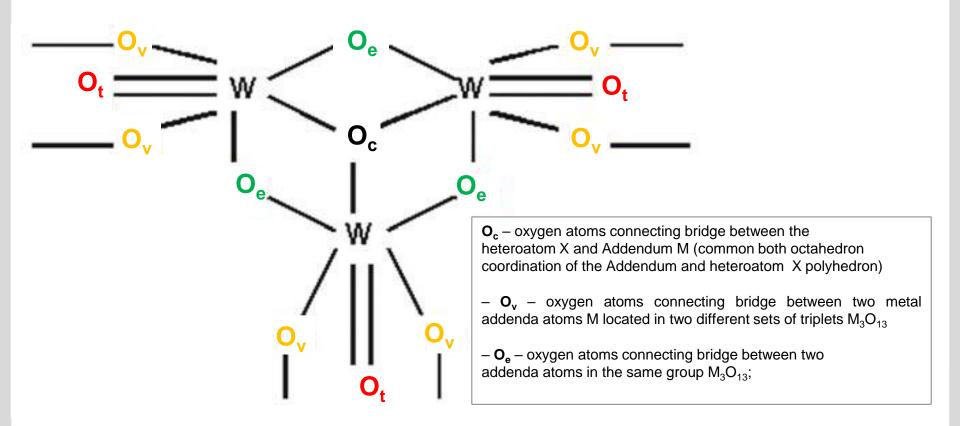
Example:

 $Cs_{14}Na_{30}Co^{II}_{6}[\{(GeW_{9}O_{34})_{2}Dy^{III}_{3}(\mu_{2}\text{-}OH)_{3}(H_{2}O)_{2}\}_{6}\{Co^{II}_{2}Dy^{III}_{3}(\mu_{3}\text{-}OH)_{6}(OH_{2})_{6}\}_{4}]\cdot 370H_{2}O(H_{2}O)_{2}\}_{6}(Co^{II}_{2}Dy^{III}_{3}(\mu_{3}\text{-}OH)_{6}(OH_{2})_{6}\}_{4}]\cdot 370H_{2}O(H_{2}O)_{2}\}_{6}(Co^{II}_{2}Dy^{III}_{3}(\mu_{3}\text{-}OH)_{6}(OH_{2})_{6})_{6}(OH_{2})_{6}]\cdot 370H_{2}O(H_{2}O)_{2}$

 ${Dy_{30}Co_8}$

M. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. Int. Ed, 2015, 54, 15574.

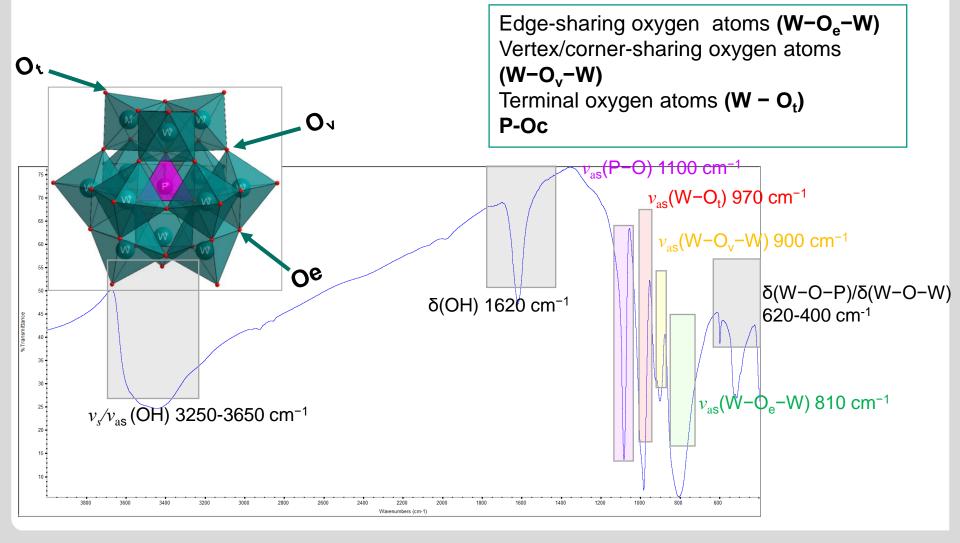
Solution State Characterization Techniques


Stability and structural information

- Multinuclear NMR Spectroscopy
- UV-Vis Spectroscopy
- Cyclic Voltammetry
- Mass Spectrometry

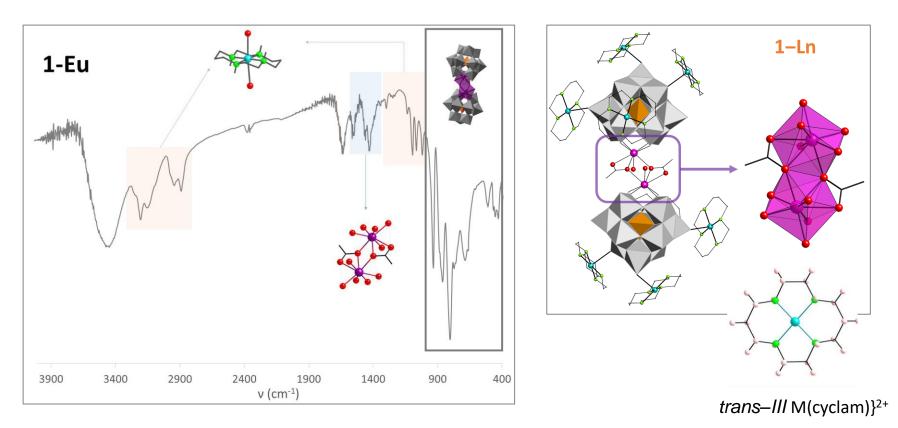
Solid State Characterization Techniques

FT-IR Spectroscopy

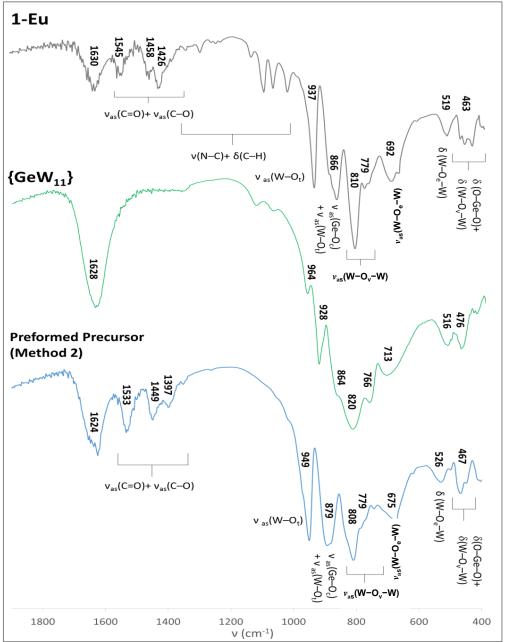


Types of addendum-oxygen connections in polyoxometalates

Solid State Characterization Techniques


FT-IR Spectroscopy: Na₃[PW₁₂O₄₀]·H₂O

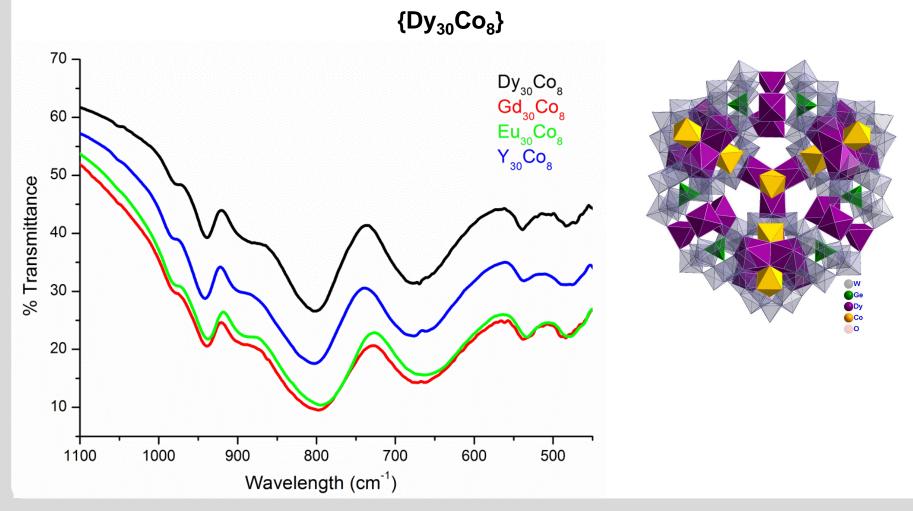
FT-IR Spectroscopy

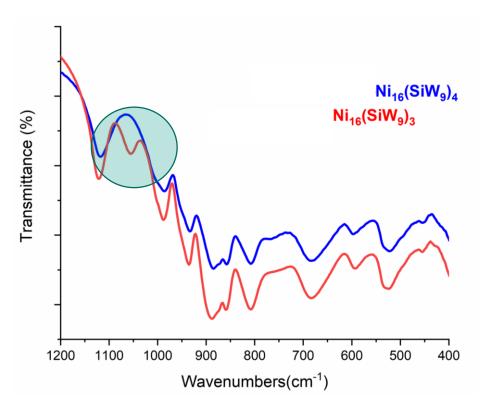


$$\label{eq:cucyclam} \begin{split} &[Cu(cyclam)]_2[\{Cu(cyclam)\}_4\{(\alpha\text{-}GeW_{11}O_{39})Ln(H_2O)(OAc)\}_2]\cdot 18H_2O\ (\textbf{1-Ln},\ where\ Ln\\ &=La-Lu \end{split}$$

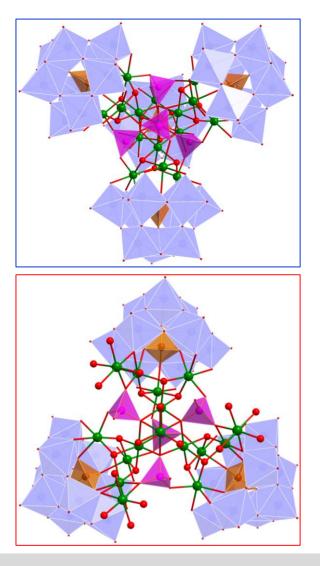
FT–IR spectra of **1–Eu** derivative highlighting the bands originating from each subunit.

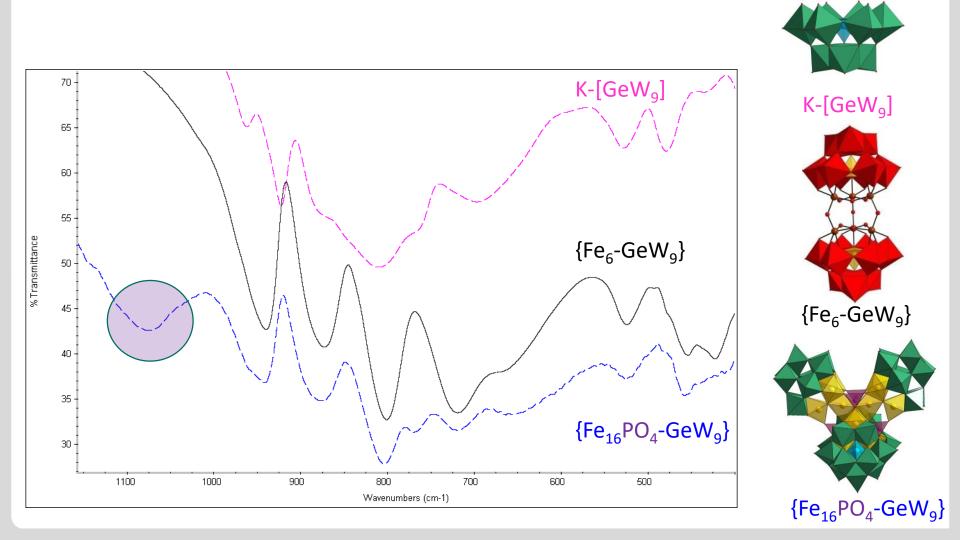
Jagoba Martín-Caballero et. al. Inorganic Chemistry 2019 58 (7), 4365-4375. DOI: 10.1021/acs.inorgchem.8b03471


Karlsruhe Institute of Technology

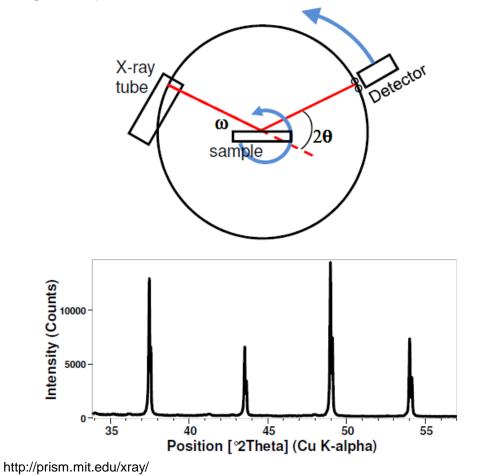

Details of the low–wavenumber region of the FT–IR spectra of 1-Eu compared to those of the monolacunary {GeW₁₁} and the preformed precursor used.

Structural Analog Comparsion

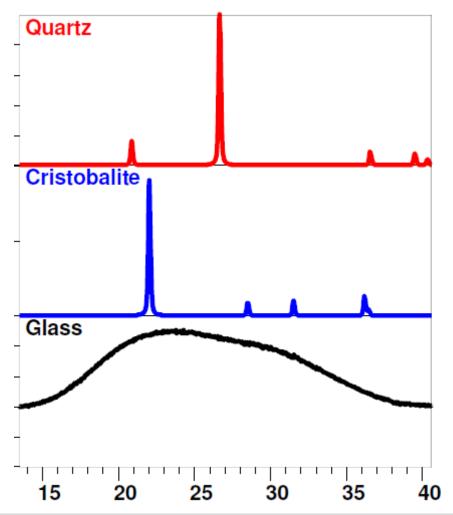

 $Cs_{14}Na_{30}Co^{II}_{6}[\{(GeW_{9}O_{34})_{2}Dy^{III}_{3}(\mu_{2}\text{-}OH)_{3}(H_{2}O)_{2}\}_{6}\{Co^{II}_{2}Dy^{III}_{3}(\mu_{3}\text{-}OH)_{6}(OH_{2})_{6}\}_{4}]\cdot 370H_{2}O(H_{2})_{6}\}_{6}$


Isolation of Mixtures

Targetting New Compounds



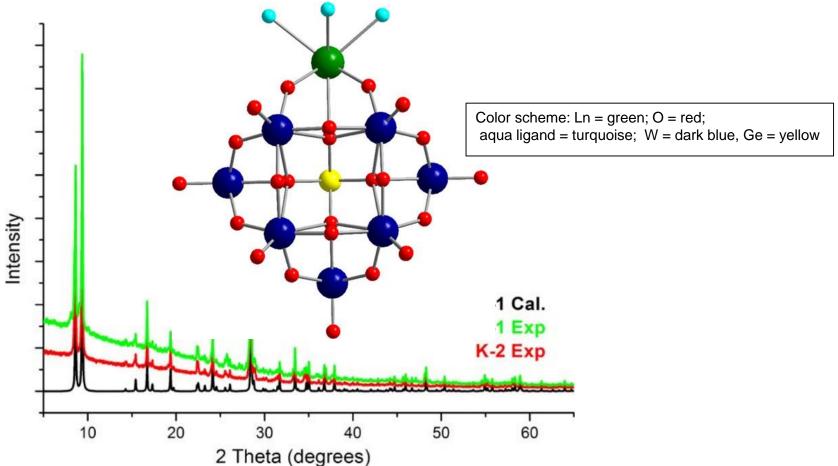
Institute of Nanotechnology (INT)


An X-ray diffraction pattern is a plot of the intensity of X-rays scattered at different angles by a sample.

Silica (SiO₂) Phases

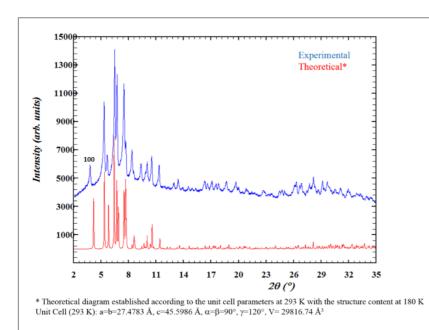
Quartz, cristobalite, and glass are all

different phases of SiO₂


- They are chemically identical, but the

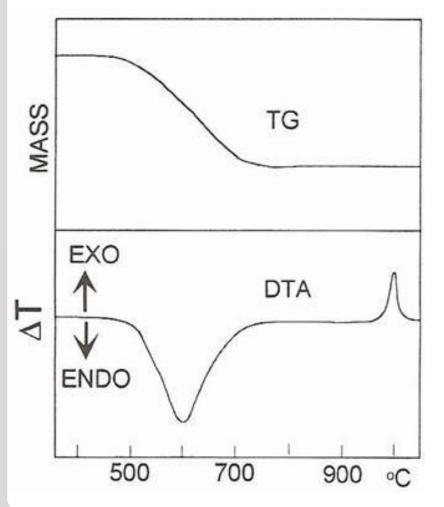
atoms are arranged differently.

 As shown, the X-ray diffraction pattern is distinct for each different phase.


$[Ln(H_2O)_n GeW_{11}O_{39}]^{5-}(Ln = Dy (1), Er (2), n = 4,3)$

Ibrahim, M.; Mbomekallé, I.M.; De Oliveira, P.; Baksi, A.; Carter, A.B.; Peng, Y.; Bergfeldt, T.; Malik, S.; Anson, C.E. ACS Omega 2019, 4, 21873–21882.

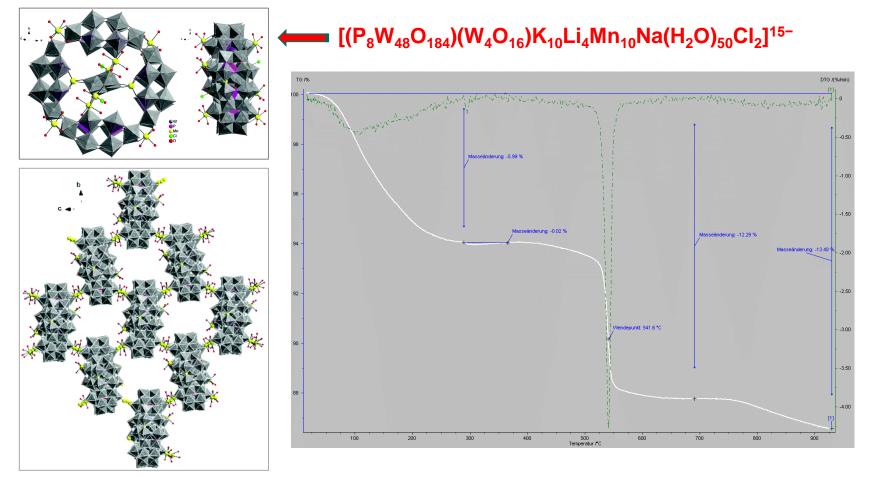
$\begin{array}{c} \text{Cs}_{14}\text{Na}_{30}\text{Co}^{\text{II}}_{6}[\{(\text{GeW}_{9}\text{O}_{34})_{2}\text{Dy}^{\text{III}}_{3}(\mu_{2}\text{-}\text{OH})_{3}(\text{H}_{2}\text{O})_{2}\}_{6}\{\text{Co}^{\text{II}}_{2}\text{Dy}^{\text{III}}_{3}(\mu_{3}\text{-}\text{OH})_{6}(\text{OH}_{2})_{6}\}_{4}]\cdot\textbf{370H}_{2}\text{O}\\ \textbf{\{Dy}_{30}\text{Co}_{8}\}\end{array}$



Formula	$Co_{14}Cs_{14}Dy_{30}Ge_{12}H_{842}Na_{30}O_{850}W_{108}$
Formula weight	43426
Crystal System	Trigonal
Space Group	P-3
a / Å	29.8349(10)
c / Å	48.184(3)
U / Å ³	37144(4)

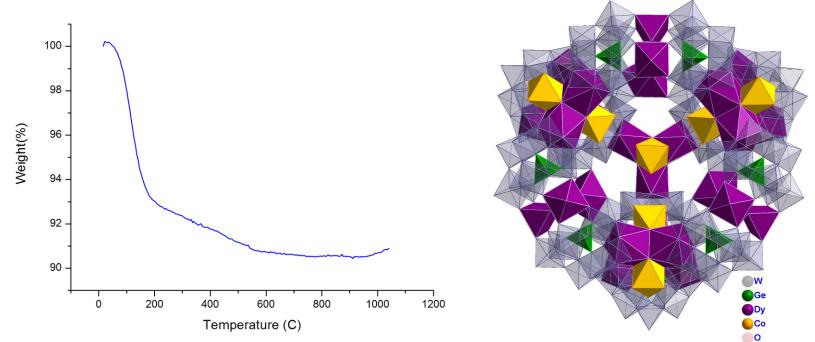
Ibrahim, M.; Mereacre, V.; Leblanc, N.; Wernsdorfer, W.; Anson, C.E.; Powell, A.K. Angew. Chemie - Int. Ed. 2015, 54, 15574–15578.

Differential thermal analysis (DTA) / Thermogravimetric analysis (TGA)

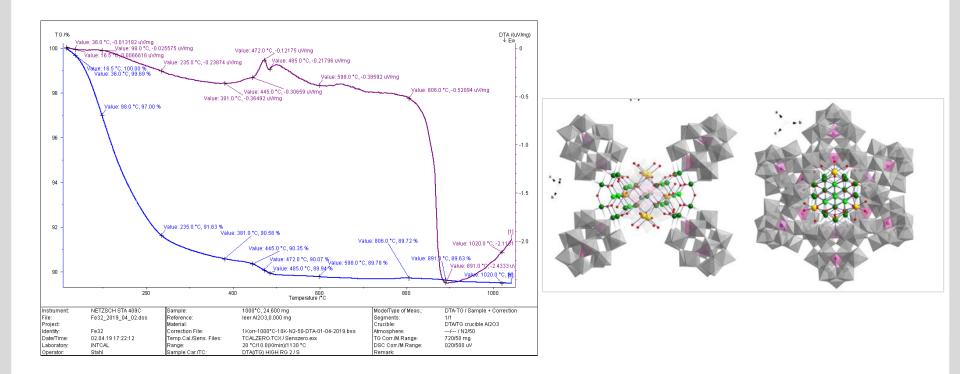

TG measures mass changes in a material as a function of temperature (or time) under a controlled atmosphere. Its principal uses include measurement of a material's thermal stability and composition.

In **DTA**, the temperature of a sample is compared with that of a reference substance, and the liberation or absorption of energy associated with various sample transitions can be correlated with the difference in the two temperature values. Temperature for thermal events such as phase transitions, melting points, crystallization temperatures, and others can be determined.

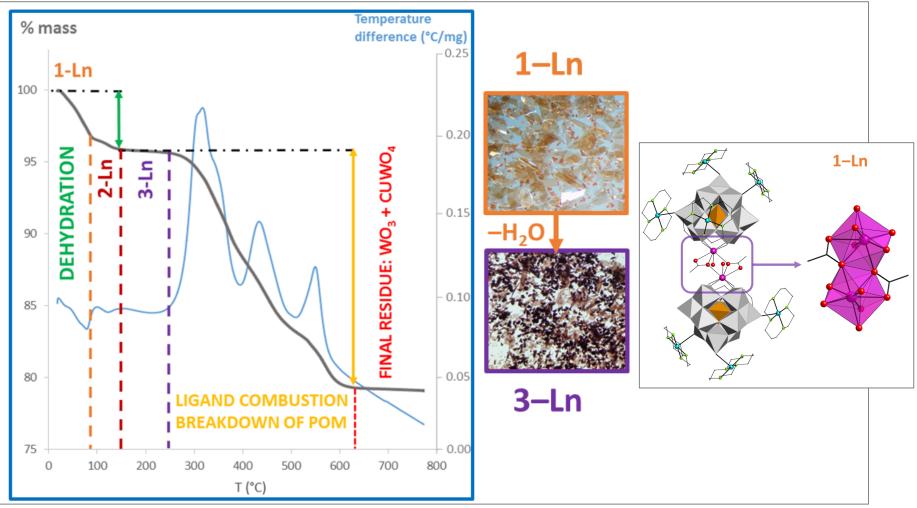
Differential thermal analysis (DTA) / Thermogravimetric analysis (TGA)


 $K_{3}Li_{8}Mn_{2}[(P_{8}W_{48}O_{184})(W_{4}O_{16})K_{10}Li_{4}Mn_{10}Na(H_{2}O)_{50}Cl_{2}]\cdot62H_{2}O$

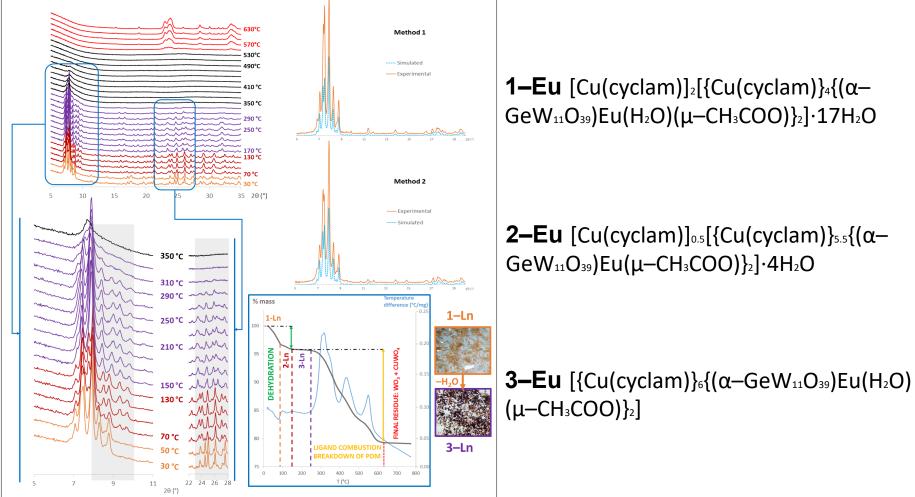
M. Ibrahim, I. M. Mbomekallé, P.deOliveira, G. E. Kostakis, C. E. Anson, Dalton Trans. 2019, 48, 15545.


 $\begin{array}{c} \text{Cs}_{14}\text{Na}_{30}\text{Coll}_{6}[\{(\text{GeW}_{9}\text{O}_{34})_{2}\text{Dy}^{\text{III}}_{3}(\mu_{2}\text{-}\text{OH})_{3}(\text{H}_{2}\text{O})_{2}\}_{6}\{\text{Coll}_{2}\text{Dy}^{\text{III}}_{3}(\mu_{3}\text{-}\text{OH})_{6}(\text{OH}_{2})_{6}\}_{4}]\cdot370\text{H}_{2}\text{OH}_{2}\text$

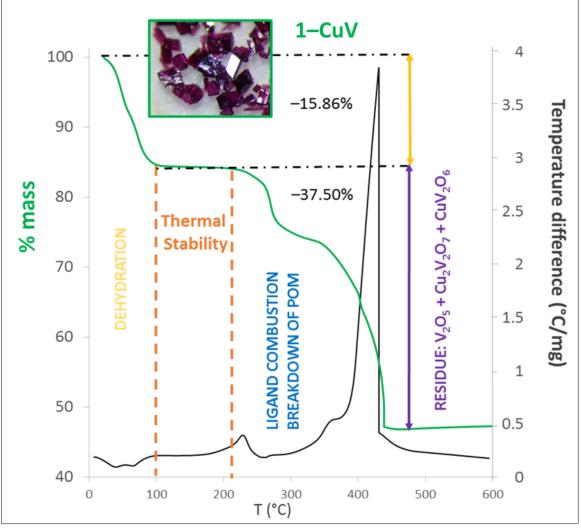
TA methods determine properties—they do not represent a kind of structure analysis.



$CsNa_{59}[Fe_{32}O_{45}Na_{6}(OH_{2})_{18}(\alpha \text{-}P_{2}W_{15}O_{56})_{6}] \cdot \textit{ca.} 260H_{2}O$


 $\label{eq:cucyclam} [Cu(cyclam)]_2[\{Cu(cyclam)\}_4\{(\alpha-GeW_{11}O_{39})Ln(H_2O)(OAc)\}_2]\cdot 18H_2O \ (\textbf{1-Ln}, \ where \ Ln = La-Lu \ Label{eq:cucyclam} Label{eq:cucyclam} = La-Lu \ Label{eq:cucyclam} = Label{$

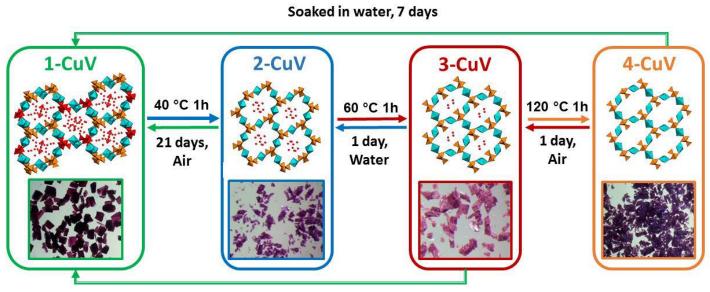
Jagoba Martín-Caballero et. el. Inorganic Chemistry 2019 58 (7), 4365-4375. DOI: 10.1021/acs.inorgchem.8b03471


Single–Crystal–to–Single–Crystal Transformations (SCSC transformations)

Variable–temperature PXRD patterns (TPXRD) from room temperature to 630 °C of **1–Eu** derivative with details along with the TGA curve and digital photographs of the hydrated and anhydrous phase. Comparison between the xperimental (Method 1 and 2) and simulated PXRD patterns for **1–Eu** are also shown.

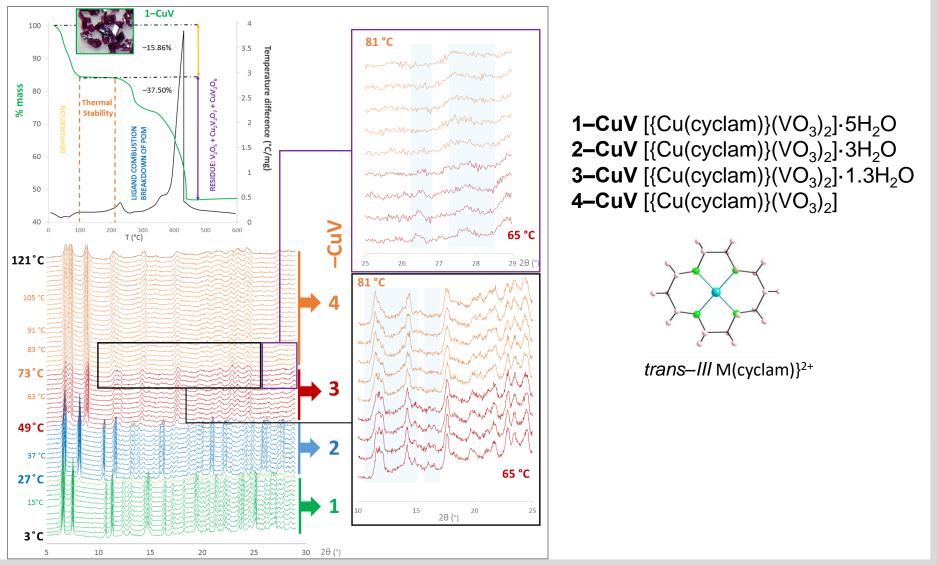
 $[{Cu(cyclam)}(VO_3)_2] \cdot 5H_2O(1-CuV)$

Martín-Caballero et.al. Inorg. Chem. 2016, 55, 4970-4979, DOI: 10.1021/acs.inorgchem.6b00505



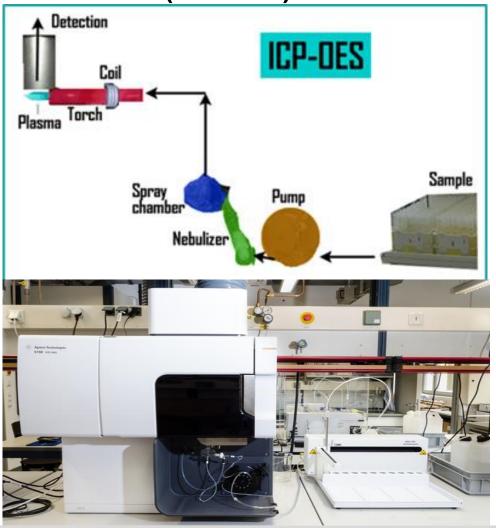
trans-III M(cyclam)}2+

Scheme of the reversibility of the SCSC transformations between **1–4–CuV**

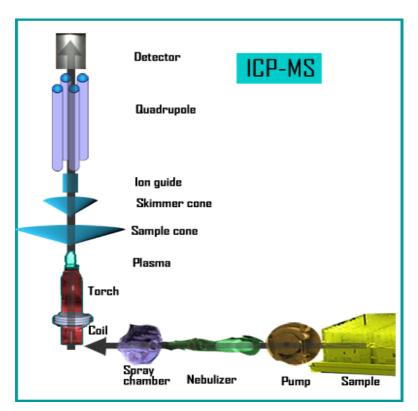

Soaked in water, 7 days

[{Cu(cyclam)}(VO₃)₂]·3H₂O (2–CuV). Single crystals of [{Cu(cyclam)}(VO₃)₂]·5H₂O (1–CuV) were heated at 40 °C in an oven for 1 h, which produced a color change from dark purple to light purple. [{Cu(cyclam)}(VO₃)₂]·1.3H₂O (3–CuV). Single crystals of 1–CuV were heated in an oven at 60 °C for 1 h, with their color changing to dark pink. [{Cu(cyclam)}(VO₃)₂] (4–CuV). Single crystals of 1–CuV were heated in an oven at 120 °C

for 1 h and a slight color change to darker purple was observed.


Single–Crystal–to–Single–Crystal Transformations (SCSC transformations)

Elemental Analysis


Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)

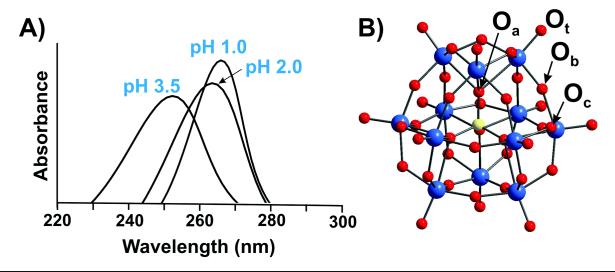
Elemental Analysis

Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Elemental Analysis

Elemental analysis (%) for $Na_{22}Rb_{6}[\{Co_{4}(OH)_{3}PO_{4}\}_{4}(A - \alpha - PW_{9}O_{34})_{4}] \cdot 76 H_{2}O$:

Calcd: Na 3.94, Rb 4.00, P 1.93, Co 7.35, W 51.57 **Found:** Na 3.16, Rb 4.14, P 1.95, Co 7.15, W 51.30


Elemental analysis (%) for $Cs_{14}Co_6Na_{30}$ [{(GeW₉O₃₄)₂Dy^{III}₃(µ₂-OH)₃(H₂O)₂}₆{Co^{II}₂Dy^{III}₃(µ₃-OH)₆(OH₂)₆}₄]·ca. 370 H₂O

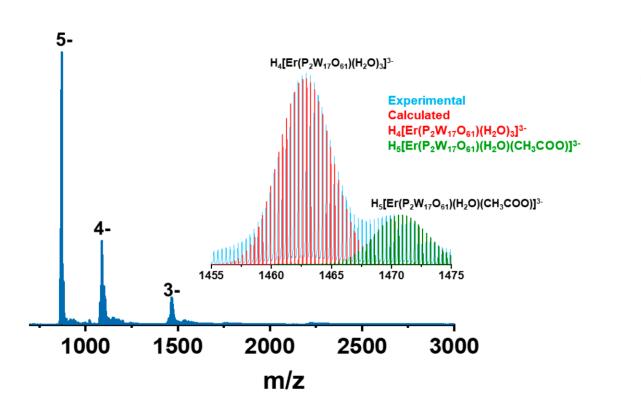
Calcd: Cs 4.28, Na 1.58, Co 1.90, W 45.72, Ge 2.01, Dy 11.22 **Found:** Cs 4.13, Na 1.46, Co 1.86, W 45.80, Ge 1.94, Dy 11.50

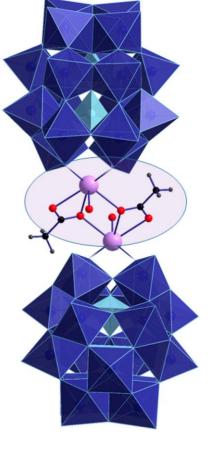
Electronic Spectroscopy

The addenda ions in POMs have d⁰ electronic configuration, and as a result, only one absorption band occurs in the UV-vis between 190 and 400 nm due to the oxygen-to-metal charge transfer transition: **p**_π-**d**_π charge-transfer transitions of the O_t \rightarrow W^{VI} (O_t – terminal oxygen atom), and p_π-d_π charge-transfer transitions of the O_{b,c} \rightarrow W^{VI} (O_{b,c} – bridge oxygen atoms) (

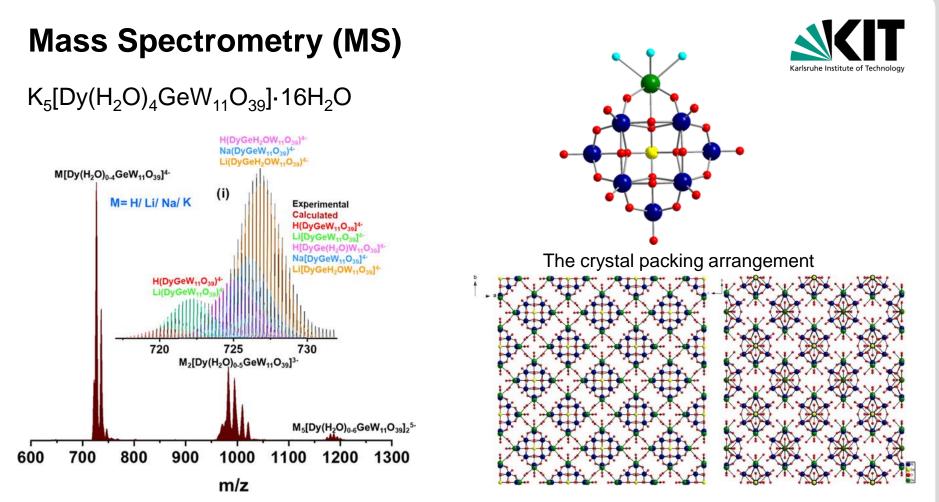
(A) UV-vis spectra of aqueous solutions of $H_3[P^VW^{VI}_{12}O_{40}]$ recorded at pH 1.0; 2.0 and 3.5. The decomposition of Keggin anion can be clearly seen already at pH 3.5 by shifting of the maximum absorption from 263 nm to 252.5 nm. (B) $[P^VW^{VI}_{12}O_{40}]^{3-}$ with the indicated types of oxygen atoms: $\mu_3 - O_a - O_a = 0$ oxygen atom connected to heteroatom P^V ; $\mu_2 - O_b$ and $\mu_2 - O_c - two$ types of bridging atoms in the structure; $O_t - terminal oxygen atom$.

N. I. Gumerova and A. Rompel , Chem. Soc. Rev., 2020, 49 , 7568 - 7601


Electrospray-ionization mass-spectrometry (ESI-MS) is suitable for the elucidation of solution phase equilibria of stable upon ionization anions, since it enables semi-quantitative detection of both cationic and anionic species in aqueous solvents with excellent detection limits. POMs are ideal candidates for mass-spectrometry studies since they exhibit complex isotopic envelopes resulting from the high number of stable isotopes as for tungsten (¹⁸²W, 26.5%; ¹⁸³W, 14.3%; ¹⁸⁴W, 30.6%; ¹⁸⁶W, 28.4%) or molybdenum (⁹²Mo, 14.8%; ⁹⁴Mo, 9.3%; ⁹⁵Mo, 15.9%; ⁹⁶Mo, 16.7%; ⁹⁷Mo, 9.6%; ⁹⁸Mo, 24.1%; ¹⁰⁰Mo, 9.6%), and are intrinsically charged.


H. N. Miras, E. F. Wilson and L. Cronin, *Chem. Commun.*, 2009, 1297–1311 N. I. Gumerova and A. Rompel , *Chem. Soc. Rev.*, 2020, 49 , 7568 – 7601

Mass Spectrometry (MS)


$[\{\mathsf{Er}(\mathsf{H}_2\mathsf{O})(\mathsf{CH}_3\mathsf{COO})(\mathsf{P}_2\mathsf{W}_{17}\mathsf{O}_{61})\}_2]^{16-}$

Negative ion ESI MS in a water/ACN mixture. The 3- region is expanded in the inset and two peaks are compared with their calculated isotope pattern.

M. Ibrahim, A. Baksi, Y. Peng, F.K. Al-Zeidaneen, I.M. Mbomekallé, P. de Oliveira, C.E. Anson, *Molecules* 2020, 25, 4229.

ESI MS: 2 sets of peaks at the mass range 710–760 and 960–1030 corresponding to 4- and 3-charge state, respectively. Strongest peak at m/z 715–730 is expanded in the inset (i). Different alkali-metal-exchanged peaks were observed and the mass envelope is compared with 5 different possible compositions, and their calculated isotope distribution pattern is overlaid.

M. Ibrahim, I. M. Mbomekallé, P. de Oliveira, A. Baksi, A. B. Carter, Y. Peng, T. Bergfeldt, S. Malik, C.E. Anson, ACS Omega 2019, 4, 21873–21882

Nuclear magnetic resonance spectroscopy has been carried out on POMs containing NMR-active nuclei, i.e.³¹P (natural abundance (NA): NA (³¹P) = 100%; nuclear spin (I): I = 1/2), ⁵¹V (NA = 99.75%; I = 7/2), ¹⁷O (NA = 0.04%; I = 5/2), ¹H (NA = 99.98%; I = 1/2), ²⁹Si (NA = 4.7%; 1/2), and, later, ⁹⁵Mo (NA = 15.87%; I = 5/2) and ¹⁸³W (NA = 14.32%, I = 1/2), to investigate their solution structures and dynamics since the 1970s. For reliable identification of a POM species in solution, it is desirable, whenever possible, to measure NMR spectra of all NMR-active core components.

And ¹⁹F, ⁷⁷Se, ¹¹⁹Sn, ¹⁹⁵Pt,.....

N. I. Gumerova and A. Rompel , Chem. Soc. Rev., 2020, 49 , 7568 - 7601

¹⁹F, ³¹P, ⁷⁷Se, ¹¹⁹Sn, ¹⁹⁵Pt, ¹⁸³W.....

²⁷ Aluminium	(² Hydrogen)	(⁴¹ Potassium)
³⁹ Argon	³ Hydrogen	¹ Proton
⁷⁵ Arsenic	(¹¹³ Indium)	¹⁰³ Rhodium
¹³⁵ Barium	¹¹⁵ Indium	(⁸⁵ Rubidium)
¹³⁷ Barium	¹²⁷ Iodine	⁸⁷ Rubidium
⁹ Beryllium	⁵⁷ lron	⁴⁵ Scandium
²⁰⁹ Bismuth	⁸³ Krypton	⁷⁷ Selenium
(¹⁰ Boron)	(¹³⁸ Lanthanum)	²⁹ Silicon
¹¹ Boron	¹³⁹ Lanthanum	¹⁰⁷ Silver
(⁷⁹ Bromine)	²⁰⁷ Lead	¹⁰⁹ Silver
⁸¹ Bromine	⁶ Lithium	²³ Sodium
(¹¹¹ Cadmium)	⁷ Lithium	⁸⁷ Strontium
¹¹³ Cadmium	²⁵ Magnesium	³³ Sulfur
⁴³ Calcium	⁵⁵ Manganese	(¹²³ Tellurium)
¹³ Carbon	¹⁹⁹ Mercury	¹²⁵ Tellurium
¹³³ Cesium	²⁰¹ Mercury	(¹¹⁵ Tin)
³⁵ Chlorine	⁹⁵ Molybdenum	(¹¹⁷ Tin)
³⁷ Chlorine	(⁹⁷ Molybdenum)	¹¹⁹ Tin
⁵³ Chromium	²¹ Neon	(⁴⁷ Titanium)
⁶³ Copper	⁶¹ Nickel	⁴⁹ Titanium
⁶⁵ Copper	¹⁴ Nitrogen	³ Tritium
⁵⁹ Cobalt	¹⁵ Nitrogen	¹⁸³ Tungsten
(² Deuterium)	¹⁸⁷ Osmium	²³⁵ Uranium
¹⁹ Fluorine	¹⁸⁹ Osmium	(⁵⁰ Vanadium)
(⁶⁹ Gallium)	¹⁷ Oxygen	⁵¹ Vanadium
⁷¹ Gallium	³¹ Phosphorus	¹²⁹ Xenon
⁷³ Germanium	¹⁹⁵ Platinum	(¹³¹ Xenon)
³ Helium	³⁹ Potassium	⁶⁷ Zinc
¹ Hydrogen	⁴⁰ Potassium	

http://chem.ch.huji.ac.il/nmr/techniques/1d/multi.html

Properties of ³¹P

Property	Value
Spin	1/2
Natural abundance	100%
Chemical shift range	430 ppm, from -180 to 250
Frequency ratio (=)	40.480742%
Reference compound	85% H_3PO_4 in $H_2O = 0$ ppm
Linewidth of reference	1 Hz
T ₁ of reference	0.5 s
Receptivity rel. to ¹ H at natural abundance	6.63 × 10 ⁻³
Receptivity rel. to ¹ H when enriched	6.63 × 10 ⁻³
Receptivity rel. to ¹³ C at natural abundance	37.7
Receptivity rel. to ¹³ C when enriched	37.7

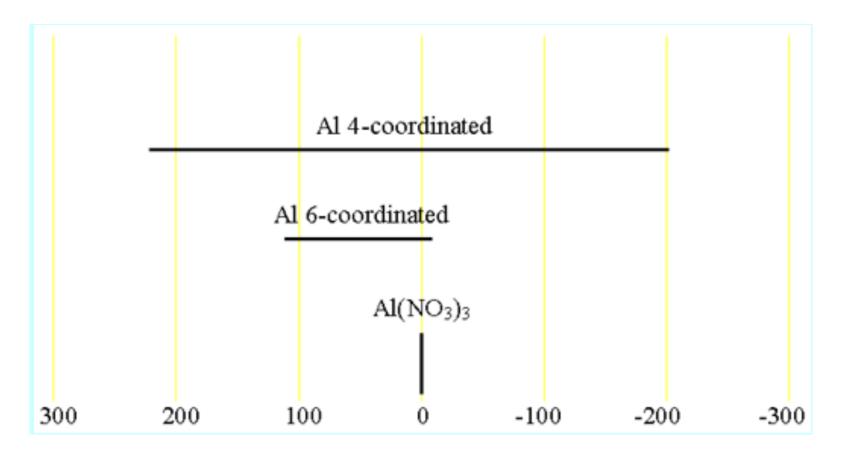
Properties of ⁷⁷**Se**

Property	Value
Spin	1/2
Natural abundance	7.63%
Chemical shift range	3000 ppm, from -1000 to 2000
Frequency ratio (<i>Ξ</i>)	19.071513%
Reference compound	Me ₂ Se
Linewidth of reference	~0.5 Hz
T ₁ of reference	~30 s
Receptivity rel. to ¹ H at natural abundance	5.37×10^{-4}
Receptivity rel. to ¹ H when enriched	7.04×10^{-3}
Receptivity rel. to ¹³ C at natural abundance	3.15
Receptivity rel. to ¹³ C when enriched	41.3

Properties of ⁵¹V

Property	Value
Spin	7/2
Natural abundance	99.750%
Chemical shift range	1900 ppm, from -1900 to 0
Frequency ratio (<i>Ξ</i>)	26.302948%
Reference compound	VOCl ₃ (90%) in C ₆ D ₆
Linewidth of reference	21 Hz
T ₁ of reference	0.0203 s
Receptivity rel. to ¹ H at natural abundance	0.383
Receptivity rel. to ¹ H when enriched	0.384
Receptivity rel. to ¹³ C at natural abundance	2250
Receptivity rel. to ¹³ C when enriched	2256

Multinuclear Magnetic Resonance (NMR)

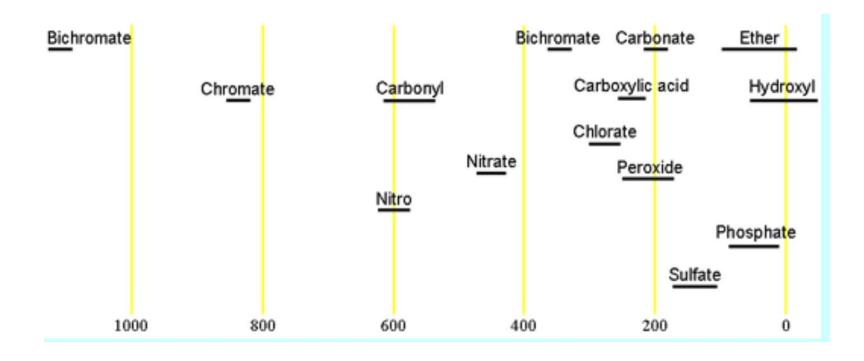


Properties of ²⁷Al

Property	Value
Spin	5/2
Natural abundance	100%
Chemical shift range	400 ppm, from -200 to 200
Frequency ratio (<i>Ξ</i>)	26.056859%
Reference compound	1.1 m Al(NO ₃) ₃ in D_2O
Linewidth of reference	11 Hz
T ₁ of reference	0.03 s
Receptivity rel. to ¹ H at natural abundance	0.207
Receptivity rel. to ¹ H when enriched	0.207
Receptivity rel. to ¹³ C at natural abundance	1220
Receptivity rel. to ¹³ C when enriched	1220

Chemical shift ranges for ²⁷Al NMR

Multinuclear Magnetic Resonance (NMR)

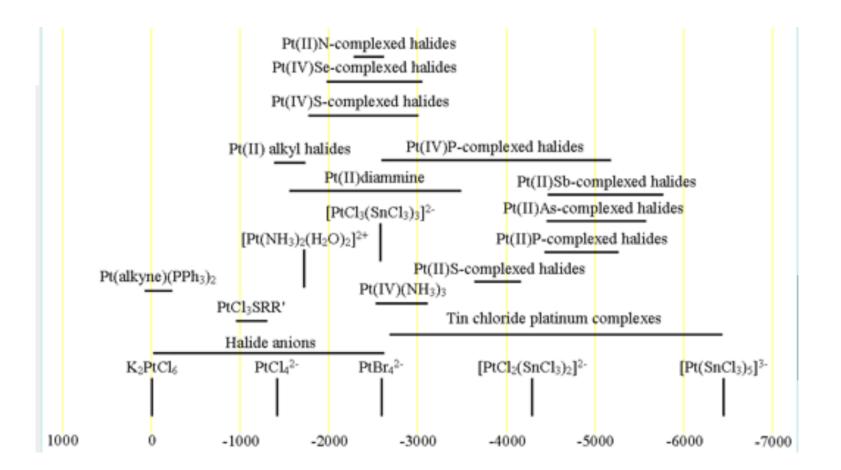


Properties of ¹⁷O

Property	Value
Spin	5/2
Natural abundance	0.038%
Chemical shift range	1160 ppm, from -40 to 1120
Frequency ratio (=)	13.556457%
Reference compound	D ₂ O
Linewidth of reference	69 Hz
T ₁ of reference	0.02 s
Receptivity rel. to ¹ H at natural abundance	1.11 × 10 ⁻⁵
Receptivity rel. to ¹ H when enriched	0.0291
Receptivity rel. to ¹³ C at natural abundance	0.0650
Receptivity rel. to ¹³ C when enriched	171

Chemical shift ranges for ¹⁷O NMR

Multinuclear Magnetic Resonance (NMR)

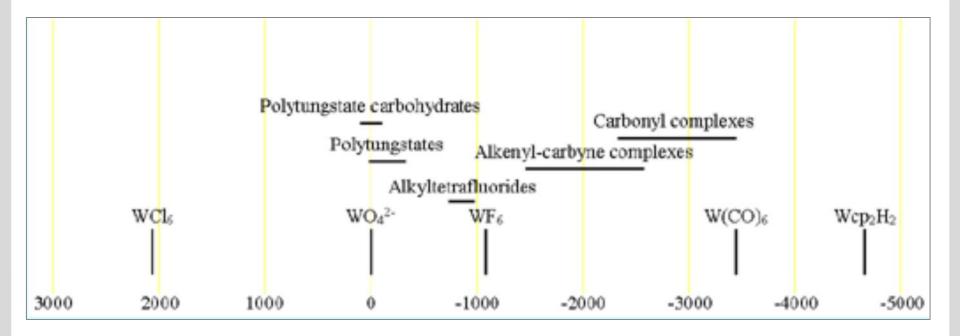


Properties of ¹⁹⁵Pt

Property	Value
Spin	1/2
Natural abundance	33.832%
Chemical shift range	6700 ppm, from -6500 to 200
Frequency ratio (<i>Ξ</i>)	21.496784%
Reference compound	1.2 M Na ₂ PtCl ₆ in D ₂ O
Linewidth of reference	5.3 Hz
T ₁ of reference	0.4 s
Receptivity rel. to ¹ H at natural abundance	3.51 × 10 ⁻³
Receptivity rel. to ¹ H when enriched	0.0104
Receptivity rel. to ¹³ C at natural abundance	20.7
Receptivity rel. to ¹³ C when enriched	61.2

Chemical Shift Ranges for Platinum NMR

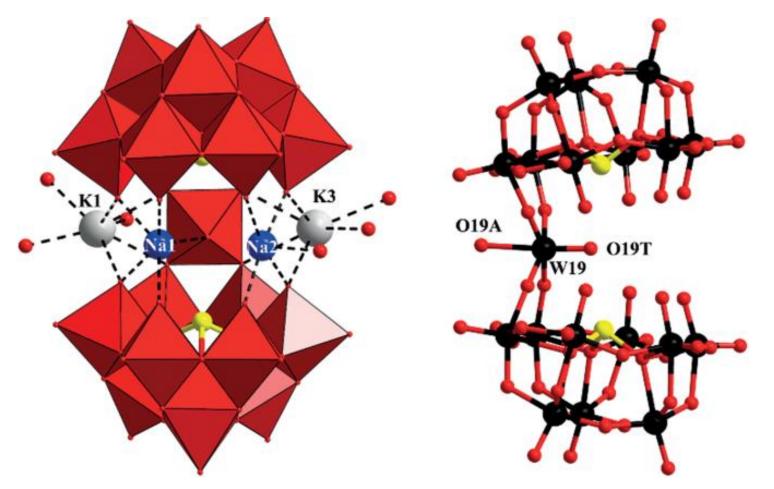
Multinuclear Magnetic Resonance (NMR)



Properties of ¹⁸³W

Property	Value
Spin	1/2
Natural abundance	14.31%
Chemical shift range	6720 ppm, from -4670 to 2050
Frequency ratio (=)	4.166387%
Reference compound	$1 \text{ M Na}_2 \text{WO}_4 \text{ in } \text{D}_2 \text{O}$
Linewidth of reference	0.6 Hz
T ₁ of reference	5 s
Receptivity rel. to ¹ H at natural abundance	1.07 × 10 ⁻⁵
Receptivity rel. to ¹ H when enriched	7.48 × 10 ⁻⁵
Receptivity rel. to ¹³ C at natural abundance	0.0631
Receptivity rel. to ¹³ C when enriched	0.441

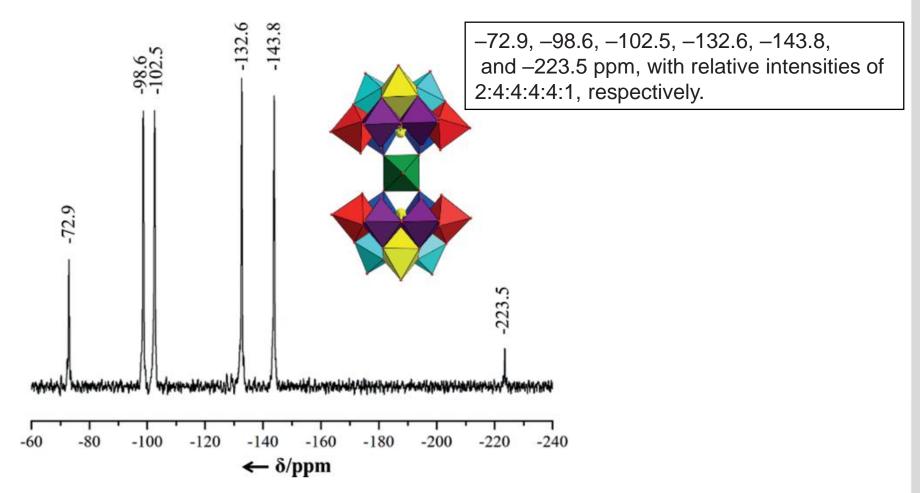
Chemical Shift Ranges for Tungsten NMR



The ¹⁸³W NMR spectrum in H₂O/D₂O at room temperature. JEOL ECX 400 instrument. 10 mm tube and Na₂WO₄ as 0 ppm reference.

¹⁸³W NMR Study in Solution

$[As_{19}^{11}O_{67}(H_2O)]^{14-}$



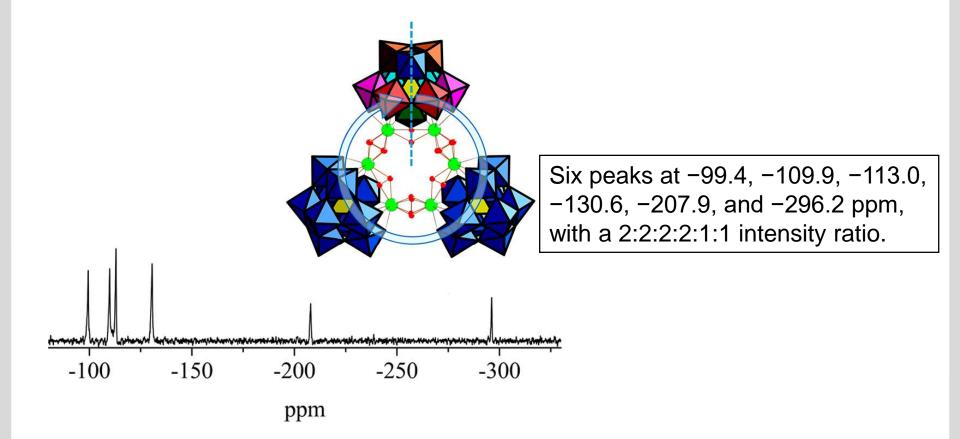
Wang, K.-Y., Bassil, B.S., Carey, A.M., Mougharbel, A.S. and Kortz, U. Eur. J. Inorg. Chem., 2017: 4210-4213

¹⁸³W NMR Study in Solution

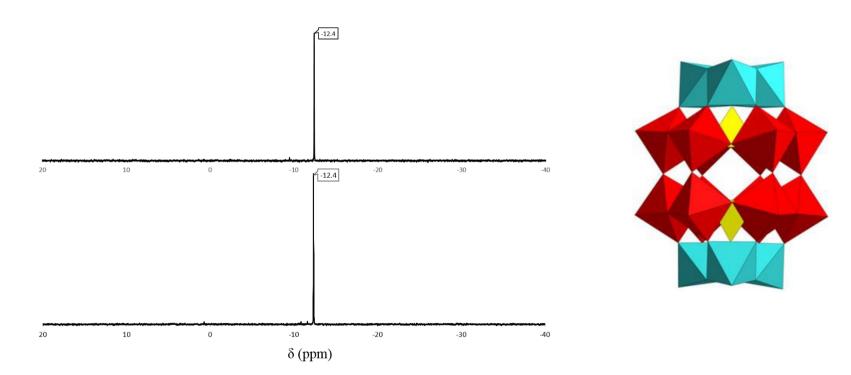
$[As_{19}^{11}O_{67}(H_2O)]^{14-}$

Inset: polyhedral representation with structurally inequivalent W centers shown in different colors.

¹⁸³W NMR Study in Solution


Equivalent WO₆ octahedra are shown in the same color.

Yang, P.; Lin, Z.; Bassil, B. S.; Alfaro-Espinoza, G.; Ullrich, M. S.; Li, M.-X.; Silvestru, C.; Kortz, U. Inorg. Chem. 2016, 55, 3718–3720.

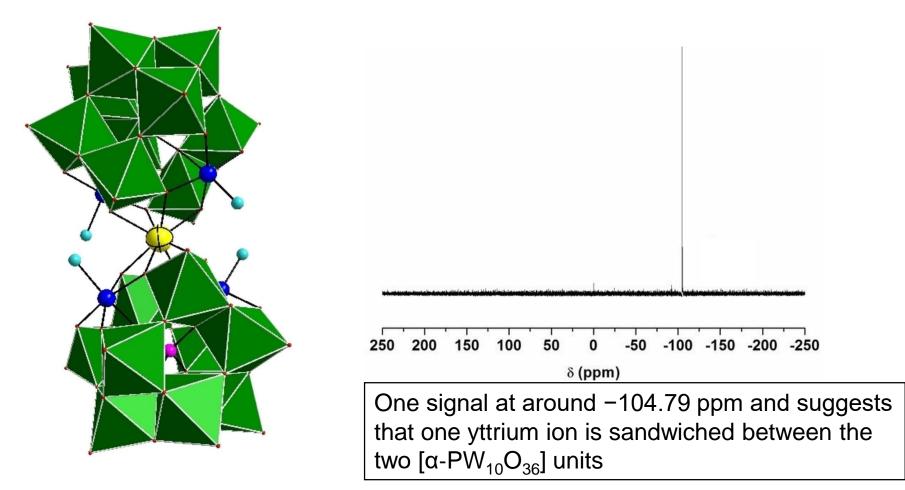

 $[Ce^{IV}_{6}(O_{2})_{9}(GeW_{10}O_{37})_{3}]^{24-}$

H. M. Qasim , W. W. Ayass , P. Donfack , A. S. Mougharbel , S. Bhattacharya , T. Nisar , T. Balster , A. Solé-Daura , I. Römer , J. Goura , A. Materny , V. Wagner , J. M. Poblet , B. S. Bassil and U. Kortz , *Inorg. Chem.*, 2019, **58** , 11300.

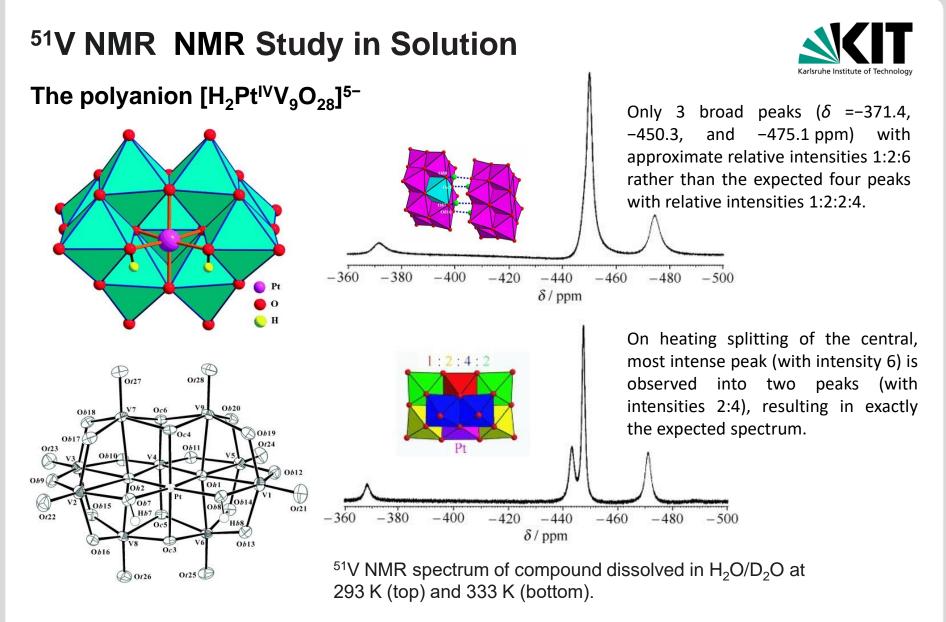
³¹P NMR Study in Solution

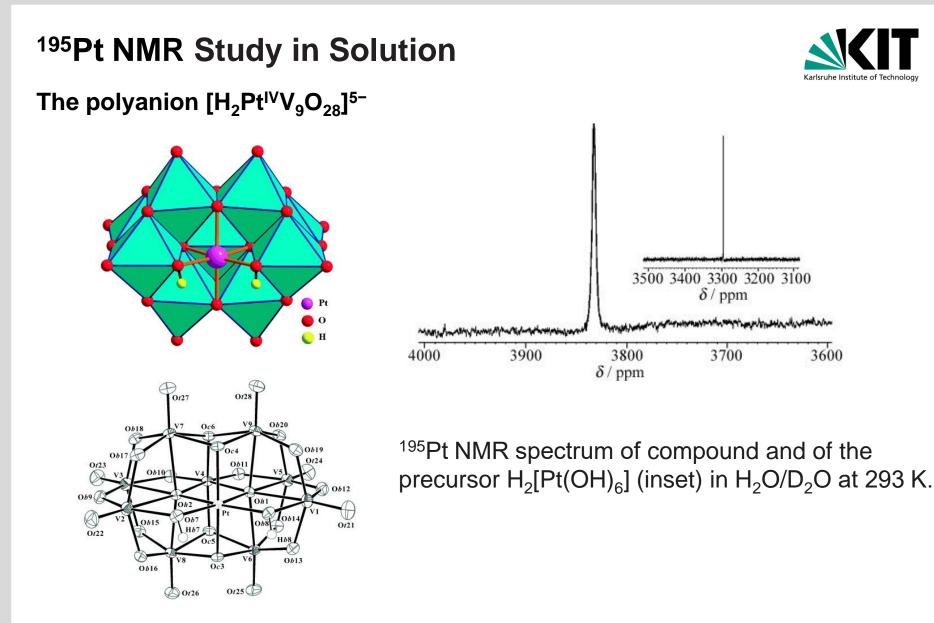
 $[P_2W_{18}O_{62}]^{6-}$

(lower) synthesized by microwave-assisted heating and (upper) by conventional heating.



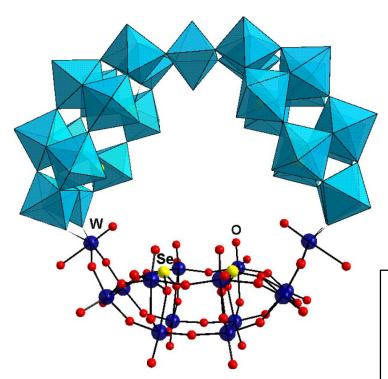
Inorganics 2019, 7(2), 23; https://doi.org/10.3390/inorganics7020023


⁸⁹Y NMR Study in Solution

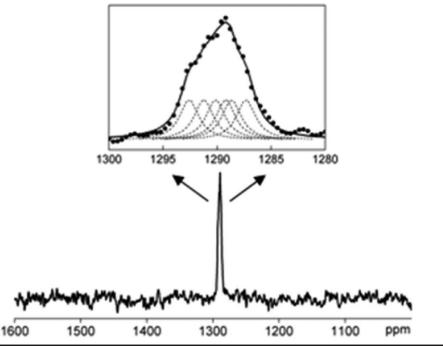

 $[Y{PM_2W_{10}O_{38}(H_2O)_2}_2]^{11-} (M = Co^{II} \text{ and } Zn^{II})$

V. Das, R. Gupta, N. Iseki, M. Sadakane, A. S. Mougharbel, U. Kortz, F. Hussain, *ChemistrySelect* **2019**, *4*, 2538.

U. Lee, H. C. Joo, K. M. Park, S. S. Mal, U. Kortz, B. Keita and L. Nadjo, Angew. Chem. Int. Ed, 2008, 47, 793–796.

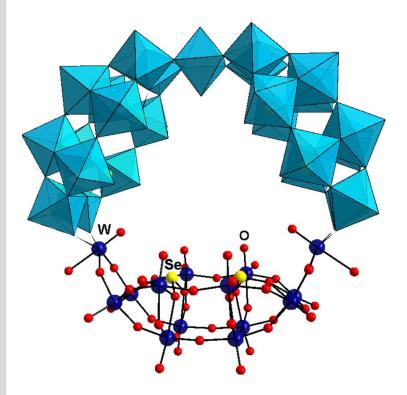


U. Lee, H. C. Joo, K. M. Park, S. S. Mal, U. Kortz, B. Keita and L. Nadjo, Angew. Chem. Int. Ed, 2008, 47, 793–796.


MAS ⁷⁷Se NMR Study

$[(Se_2W_{12}O_{46}(WO(H_2O))_3]^{24-}$

Color legend: WO₆, blue octahedra; Se, yellow balls; W, blue balls; O, red balls.

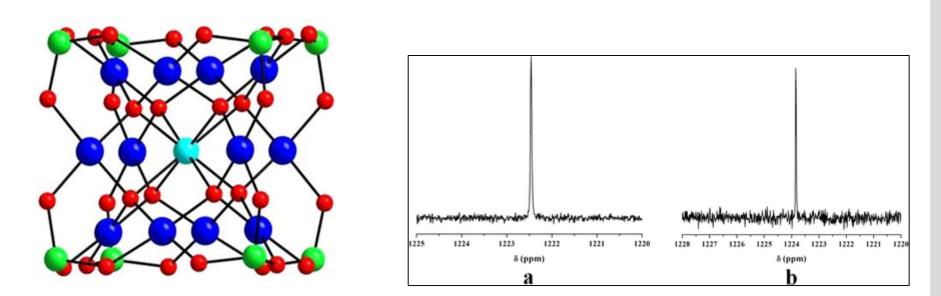

The experimental line shape and its representation as a superposition of six resonance lines, identical in widths and intensities, are shown in the inset by points and a solid line, respectively; the sextet components at 1287.3, 1288.7, 1289.2, 1290.1, 1291.2, and 1292.6 ppm are shown as dashed lines

Kalinina, I. V.; Peresypkina, E. V.; Izarova, N. V.; Nkala, F. M.; Kortz, U.; Kompankov, N. B.; Moroz, N. K.; Sokolov, M. N. Inorg. Chem. 2014, 53, 2076–2082.

⁷⁷Se NMR Study in Solution

$[(Se_2W_{12}O_{46}(WO(H_2O))_3]^{24-}$

Color legend: WO₆, blue octahedra; Se, yellow balls; W, blue balls; O, red balls. 1. Spectrum recorded immediately after dissolution.

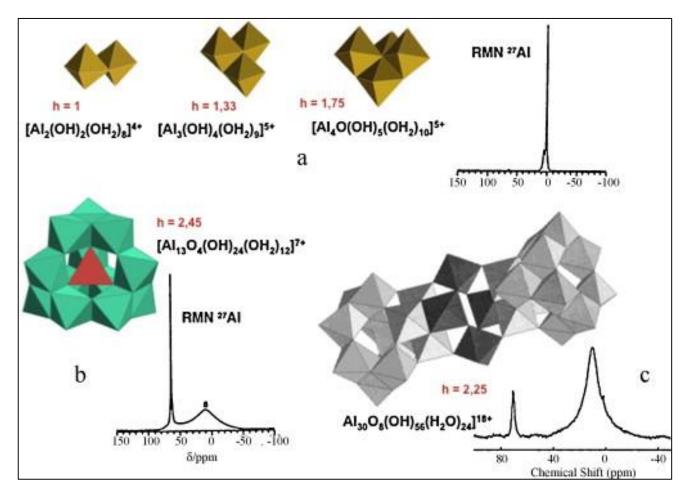

- 2. Spectrum recorded 4 h after dissolution.
- 3. Spectrum recorded 16 h after dissolution

Kalinina, I. V.; Peresypkina, E. V.; Izarova, N. V.; Nkala, F. M.; Kortz, U.; Kompankov, N. B.; Moroz, N. K.; Sokolov, M. N. Inorg. Chem. 2014, 53, 2076–2082.

⁷⁷Se NMR Study in Solution

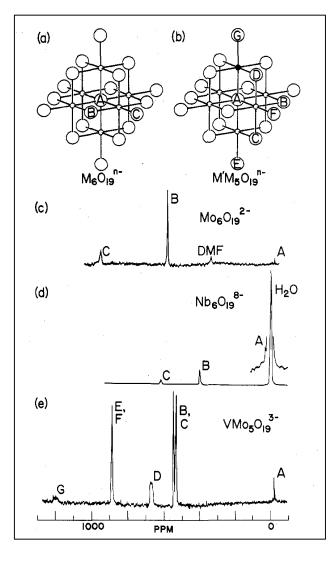
MO₈Pd^{II}₁₂(SeO₃)₈]^{*n***-}** (M= Zn, Lu)

 $[MO_8Pd^{II}_{12}(SeO_3)_8]^{n-}$ (Color code: M, turquoise; Pd, blue; O, red; Se, green.

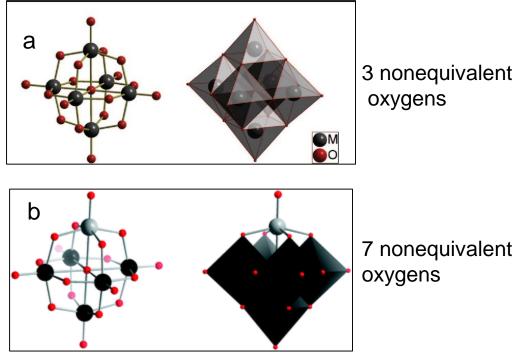

⁷⁷Se NMR spectra of **ZnSe** (a) and **LuSe** (b)

Barsukova-Stuckart, M.; Izarova, N. V.; Barrett, R. A.; Wang, Z.; van Tol, J.; Kroto, H. W.; Dalal, N. S.; Jiménez-Lozano, P.; Carbó, J. J.; Poblet, J. M.; von Gernler, M. S.; Drewello, T.; de Oliveira, P.; Keita, B.; Kortz, U. *Inorg. Chem.* **2012**, *51*, 13214–13228.

²⁷AI NMR Study in Solution


Keggin-type aluminum polyoxocation

J.P. Jolivet, C. Chaneac, D. Chiche, S. Cassaignon, O. Durupthy, J. Hernandez, *Comptes Rendus Geosciences*, 2011, 343, 113-122


¹⁷O NMR Study in Solution

Lindqvist POM $[M_6O_{19}]^{n-}$ (M = Mo^{VI}, W^{VI}, Nb^v, and Ta^v)

- Contain only three nonequivalent types of oxygens
- 6 terminal oxygens (O_c)
- 12 doubly bridging oxygens (O_B),
- Sixfold bridging oxygen (O_A).

3 nonequivalent oxygens

Other Methods

POMs have a rich electrochemistry associated with both reduction of tungsten or molybdenum and redox-reaction of heterometals (i.e., incorporated cobalt, ruthenium, iridium, or nickel). These characteristic redox wave peaks can be used to identify the number of terminal oxygen atoms, metastable hydrolysis fragments, new isomers and reduced anions.

Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) are valuable techniques to probe both the local coordination environment and the oxidation state of POM's atoms either in solution or in solid-state materials. Each kind of atom in the POM cluster can be accessed individually and an average spectrum for each element is observed. Despite XAS (X-ray absorption spectroscopy) being a powerful technique, there are just a limited number of examples for their usage in POM structure analysis.

Dynamic light scattering (DLS) is aimed to determine whether particles are formed in solutions and, if present, to examine their size. DLS has found its broadest usage in monitoring POM stability during catalytic reactions (e.g. water splitting systems).